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Povzetek

V zadnjih dvajsetih letih je vodenje hibridnih sistemov vzpodbudilo velik
znanstveni interes. Glavni razlogi se skrivajo predvsem v uporabnosti hibridnih
sistemov za Sirok spekter fizicnih sistemov, Se posebej tistih, ki so nastali v sklopu
sodobnega tehnoloskega razvoja. Cilj nase Studije je razvoj pragmati¢nega izogibanja
nelinearnim fenomenom pri vodenju hibridnih sistemov, s fokusom na podmnoZzici
preklopnih hibridnih sistemov. Razviti zakoni vodenja predstavljajo avtorjevo
splosno idejo o vodenju nelinearnih dinamicnih sistemov. Ti zakoni se bodo
uporabljali za namen vodenja na podlagi hevristicnega principa. Glavni poudarek bo
na vodenju na osnovi Iidentifikacije mehkih modelov, kot univerzalnem
aproksimacijskem pristopu k modeliranju in izboljSanju ve¢ strukturnih in globalnih
modelov. Prva faza se nanasa na identifikacijo ustaljenega stanja hibridnih sistemov.
Druga faza se nanasa na identifikacijo dinami¢nega modela hibridnega sistema
(sprejemljive natancnosti), ki z analiticCnega staliS¢a predstavlja kvalitativne in
kvantitativne lastnosti sistema.

Pri razvoju algoritmov bo poudarek na prediktivnih metodah vodenja hibridnih
sistemov na osnovi mehkih modelov, ki bodo v vecji meri odpravile glavno negativno
znaCilnost takSnih metod in sicer tj. kompleksnost obdelave v realnem casu.
Prilagojena razlic¢ica algoritma, ki predvideva sub-optimalno vodenje, pa je SirSe
uporabna in sicer tudi za sisteme, ki imajo vgrajen Sibkejsi mikroprocesor.
Tradicionalno poenostavljanje modelov hibridnih sistemov je (v skladu s teorijo
elektronskih vezij) obic¢ajno izvedeno s tako imenovanim postopkom povprecja, pri
katerem se izogibamo modernim pristopom kombiniranja diskretnih in zveznih
sistemov. V nasprotju s tem bodo v nasi Studiji (poleg tradicionalnih) harmonic¢no
integrirani tudi moderni pristopi k obravnavi hibridnih sistemov. Taksno
homogeniziranje dveh nasprotnih pristopov bo afirmiralo modeliranje nelinearnih
sistemov na podlagi identifikacije. Slednja predstavlja vodilno strategijo na poti k
izdelavi modela za S$irSo uporabo. Osnovna ideja je Se vedno zgraditi model
kompleksnega sistema (sestavljenega iz diskretnih in zveznih elementov) v obliki
nadomestnega zveznega modela, pri cemer se moramo zavedati kompleksnosti
prehodov iz enega nacina delovanja v drugi nacin. Ti prehodi hkrati vplivajo na
konCno in edinstveno obliko modela. Obravnavani sistemi imajo merljive
spremenljivke stanj, kot tudi parametre procesa. Ta predpostavka spodbuja glavno
idejo in odpira moznost zajema podatkov z opazovanjem kompleksnih prehodov
stanj (pri katerih gre za so¢asno spremembo zveznih trajektorij in diskretnih stanj).
Ta informacija se kasneje Se vedno ohranja v kon¢ni transformaciji iz prostora stanj
v psevdo-normiran prostor. Te ideje ustvarjajo Cvrste temelje za kon¢no formiranje
nove metode vodenja ter prispevajo k parcialnim in ciljnim dosezkom.

Primer sistema, ki omogocCa uporabo predstavljene metodologije, je DC-DC
pretvornik navzgor. Ta ni samo dober primer preklopnega sistema, ampak je hkrati
tudi primer vsesploSno uporabnega vira napetosti, ki je prisoten predvsem pri
alternativnih energetskih virih. Njegova pomembnost se kaze tudi v obliki Stevilnih
Studij, ki so nastale od zacCetka uporabe polprevodnikov. Izogibanje nelinearnim
fenomenom [1,7-10,56,57] je ena od glavnih motivacij in ciljev pri izdelavi algoritma
vodenja, ki je inteligenten, robusten in ekonomicen v smislu porabe casa
procesiranja.
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V nasprotju s prvimi ugotovitvami avtorjev Cuk, Ericson in Middlebrook [23,24]
je natancnost matematiCnega modeliranja v veliki meri odvisna od prehodnih
pojavov med stanji sistema in nezveznosti njihovih funkcij pri istem casu. Ti
problemi so bili odkriti Ze v sredini prejSnjega stoletja, Sele proti koncu prejSnjega
stoletja pa so se pojavili v obravnavi »chattering« efektov, »Zeno« obnaSanja in
nelinearnih fenomenov tudi pri dobro poznanih metodologijah HS.

S staliSc¢a linearne teorije vodenja sistemov vodenje na osnovi majhnih signalov
(kot so to imenovali omenjeni avtorji) dobro deluje v okolici delovne tocke sistema.
Torej, z linearizacijo v izbrani delovni tocki in analiticnim pristopom je model
(omenjeni avtorji navajajo, da gre za »povprecni model«) mogocCe uporabiti na
SirSem obmocju delovanja. Kot je Ze bilo omenjeno, z namenom, da bi dosegli
robustno delovanje algoritma vodenja, je potrebno pri Sirjenju podrocja delovanja
DC-DC pretvornika in preklopnih hibridnih sistemov upoStevati teorijo vodenja
nelinearnih dinamicnih sistemov.

Z obravnavanjem hibridne strukture [2,3], robustne resSitve [3,4], naravne limite
[3], redukcije kompleksnosti [5,6] in vseprisotnega problema izogibanja nelinearnim
pojavom [7-10] se pojavijo zelo zanimivi izzivi, ki jih je potrebno resiti za uspesno
vodenje DC-DC pretvornikov. Najuspesnejse sodobne resitve [3] temeljijo na linearni
matri¢ni neenakosti in optimizaciji HS [3,5,6], na algoritmih za zmanjsSanje
kompleksnosti [11], na formalizmu komplementarnosti (za namen zmanjSanja
nedolocenosti modela) [12,13], na metodi drsnega nacina vodenja [14,15], na metodi
hevristicnega vodenja, na nevronskih mrezZah in na metodi mehkega vodenja [10,16,
138]. Slednja metoda [16,138] je obravnavana in podrobno predstavljena v tej
disertaciji, tako da formira enotno in izboljSano metodologijo vodenja na podrocju
preklopnih hibridnih sistemov, kamor sodi tudi obravnavani DC-DC pretvornik
navzgor.

Klju¢ne besede: hibridni sistemi, preklopni hibridni sistemi, nelinearno vzbujeni
pojavi, DC-DC pretvornik, modeliranje DC-DC pretvornika na vzgor, identifikacija
nelinearnih sistemov, mehki modeli, identifikacija na osnovi mehkih modelov,
prediktivno vodenje, prediktivho vodenje na osnovi mehkih modelov, prediktivno
vodenje na osnovi mehkih modelov in dinami¢ne matrike , generalno prediktivno
vodenje na osnovi mehkih modelov, prediktivho funkcijsko vodenje na osnovi
mehkih modelov



1.Uvod

1.1 Pregled vsebine doktorske disertacije

Razlogi za to Studijo, ki so Ze bili izpostavljeni v povzetku, zahtevajo vpeljavo
izbranega pristopa za izpolnitev vseh ciljev. Izbrani fizicni sistem je hibriden in ga
lahko opiSemo z zveznimi in diskretnimi stanji. Kljub znanim hibridnim metodam
vodenja in hibridnemu modeliranju, ta Studija podaja alternativho metodo, ki
vkljucuje identifikacijo nelinearnega dinamicnega sistema. Razlog za to se skriva v
teoriji HS, ki se razvija v smeri oblikovanja sploSnega modelirnega formalizma za
sisteme z zveznimi in diskretnimi signalnimi pojavi, ki nastopajo v poljubnih
kombinacijah [2,62-64] . V poglavju Il bodo predstavljene temeljne definicije HS, ki
pojasnjujejo splosni deterministi¢ni pristop k modeliranju teh sistemov in s tem
osnovno idejo te disertacije. Slednja bo izvedena z razdelitvijo problema, ki pa se
nato interpretira kot trojna strategija v poglavjih III in IV.

Prvi¢, pozornost bo posveCena simulaciji na sploSno, z namenom razvoja
simulacijskega modela, ki bo po obnasanju kar se da podoben fizicnemu sistemu, ob
upostevanju, da nas lahko uporaba vnaprej doloCenih simulacijskih objektov zlahka
zavede pri nadaljnjem razvoju vodenja. Prednosti sodobne simulacijske platforme in
numericnih integracijskih metod bodo uporabljene za natan¢no konstrukcijo in
sinhrono simulacijo diskretnih in zveznih funkcij fizicnega sistema. Poznavanje
obravnavanega modela bo pomagalo pri naslednjih korakih razvoja.

Drugic, sledeCa Studija se izvaja na drugacen nacin kot poznana Studija o
pretvornikih PECs, predvsem z namenom, da bi nasli natan¢no metodo modeliranja,
ki ohranja robustno in splosno znanje o sistemu. Ta mora zagotavljati matematicno
obliko, ki je nadalje uporabna znotraj dobro razvitih metod vodenja. Metoda, ki
temelji na sistemu z merljivimi stanji, bo prenesla glavno breme obravnave
nelinearnega dinamicnega sistema izklju¢no na »offline« problem, vklju¢no z vso
njegovo kompleksnostjo. V nasprotju s tem, kar je Ze znano, se bo nadaljnja Studija
izognila uporabi lokalnih linearnih modelov za izbrani nacin delovanja sistema.
Metoda bo identificirala lokalni linearni model za privzeto kombinacijo vseh nacinov
delovanja sistemov v eni preklopni periodi sistema. Za uresnicitev ideje in
formalizacijo primerne oblike modela, ki jo dolo¢a algoritem vodenja, se bosta
uporabili dve razlicni metodi identifikacije. Oba modela bosta doloCena z uporabo
mehke identifikacije [34-36,65] na vhodno-izhodnih podatkih (poglavje III).

Tretji¢, analiza sistema z uporabo mehke identifikacije in modeliranja bo
predstavljala osnovo za razvoj naprednih algoritmov vodenja. Ker so bile metode in
cilji identifikacije razli¢ni, bo razvoj algoritmov vodenja prikazan v sklopu dveh
novih metod vodenja. Na podlagi modela ustaljenega stanja pretvornika in uporabe
metodologije dveh prostostnih stopenj [44], bo izpeljan nov algoritem vodenja. Po
drugi strani pa bo na osnovi obravnavanega dinami¢nega mehkega modela nacrtan
nov mehki modelno-prediktivni algoritem vodenja [18,20,38] (poglavje IV).

V sklepni fazi razvoja bosta identifikacija in vodenje preizkuSena na fizicnem
procesu in nato ustrezno ovrednotena (poglavje IV). Konc¢ni sklep je podan v
poglavju V.
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1.1.1 Uveljavljene metodologije za iskanje naprednega algoritma
vodenja v sistemu SAS

Metodologija, ki bo uporabljena za dosego zgoraj omenjenih ciljev ter kasneje za
formiranje doktorske disertacije, bo pri razvoju nove metode vodenja hibridnih
sistemov upostevala sodobne in napredne mehke metode za identifikacijo in
modeliranje. Kljub obstoju Ze razvitih naprednih metod hibridnega vodenja, in sicer
MPC, ki temelji na modelih MLD, LC vodenje in vodenje na osnovi simboli¢nega
modela [6,12,13,17,26,63] (poglavje II), bo nasa metodologija dopolnila uveljavljene
MPC pristope.

V disertaciji bomo izpostavili glavne pomanjkljivosti uveljavljenih metodologij,
ki bodo vodile nase delo v drugo smer.

Izbrali smo MPC metodologijo, ki zahteva popolno predanost modeliranju
tak$nih sistemov. Ce se preprosto osredoto¢imo na razvoj sodobnih metod, ki
obravnavajo DC-DC pretvorbo, potem lahko zaklju¢imo naslednje.

Hibridno modeliranje in vodenje predstavljata najsodobnejsi pristop k
raziskovanju in nacrtovanju pulzno energijskih pretvornikov (Pulse Energy
Converters - PECs) [3], za katere avtorji podajajo kratek pregled in primerjavo
hibridnih pristopov (ki v veCini primerov temeljijo na linearni matri¢ni neenakosti -
LMI) ter analizo optimizacije s konveksnim programiranjem ali optimizacije
stabilnosti s funkcijo Ljapunova. Sistemati¢ni pristopi k vodenju temeljijo na
lineariziranem podatkovno-vzoréenem modelu ter na implementaciji LQ
optimizacije [42] ali Hw vodenju [4] z namenom, da bi zagotovili doloceno
robustnost za sisteme ki imajo deloma poznane matemati¢ne modele. V nasprotju s
tem, dinamicno programiranje, ki omogoca iskanje reSitve pri ¢asovno limitirajoci
konvergenci, naredi optimizacijo bolj kompleksno in odpre znani problem izbire
funkcije Ljapunova [11]. Prav tako je pomembna obravnava sploSno uporabnih
pristopov, ki temeljijo na trenutnem vodenju, znanem tudi kot drsni reZim vodenja
(ang. sliding mode control) [14,15].

V disertaciji se osredotoCamo na vodenje izhodne napetosti, ki je povezano z
veCino omenjenih pristopov hibridnega modeliranja, hkrati pa je v skladu s cilji
razvoja vodenja PEC pretvornika. Ceprav MPC [5,17] odpira vprasanje o modeliranju
delovnega cikla (ang. duty-cycle) in o aproksimaciji z v-locljivostjo (resolucijo), se v
tem delu izogibamo striktni locljivosti, ki je relativna in v veliki meri odvisna od
izbire pripadnostnih funkcij mehkega modela. Mehc¢anje omejitev obmocja HS z
mehko logiko se izvaja na graficnem modelu, ki pa ni polieder z ostrimi robovi. Zato
se uporablja kompleksna foliacija (ang. foliation), pri kateri ni potrebno upostevati
robov in mehcati prehodov. Ugotovimo lahko, da je uporaba mehke identifikacije
povezana z dinami¢nim programiranjem [11] in relaksacijsko metodo, ki pa vraca
enake rezultate glede na stabilnost optimizacijskih algoritmov, napoved
konvergencnega casa in problem zaustavitve. To krepi naSe izkuSnje in potrjuje
staliSCe, da je na tem mestu, kljub upostevanju zmogljivosti sodobnih procesorjev, Se
vedno potrebna »offline« optimizacija.

Z namenom, da bi lahko uporabili napreden in uveljavljen MPC, ki je primeren
tudi za sisteme, ki so relativno trivialni in hitri, smo spremenili pristop k
modeliranju sistema, kar je opisano v tej disertaciji. To disertacijo smo pripravili, ker
se nacin modeliranja sistema ne more dolociti (z reSevanjem matemati¢nega
problema) samo na podlagi kon¢nega aplikacijskega cilja in vodenja, temve¢ mora
biti pridobljen na osnovi fizikalnega ozadja. Poglavje II vkljucuje obseZen pregled ter
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obravnava vec zadev povezanih z modeliranjem SAS sistema, pri cemer je poudarek
na DC-DC pretvorniku navzgor. Skratka, pri analizi problema DC-DC pretvornika
navzgor lahko izpostavimo nekatere zelo znacilne povezave z Ze predstavljenimi in
objavljenimi reSitvami. V poglavju IIl si prizadevamo najti nek alternativen in
identificiran matemati¢ni model, ki bi zdruZeval prednosti in slabosti poznanih
preteklih Studij.

V eni preklopni periodi Ts dobimo ve¢ menjav poloZajev polprevodnikov in
obvezno tudi topologijo vezja. VeCina predhodnih modeliranj [1,7,8] temelji na
zaporednem dodajanju odsekoma afinih modelov ali formiranju povprecno-
preklopnega modela, kot sta to predstavila Middlebrook in Cuk [43]. Resitev
modeliranja temelji na perturbacijski metodi, ki je veljavna za »majhno« signalno
vrednosti. Poleg tega isti avtorji, skupaj z Ericksonom [24], predlagajo natancnejSe
modeliranje, imenovano »veliko« signalno modeliranje (ang. large signal modelling),
ki se uporablja tudi za robustne aplikacije. V sodobnih reSitvah vodenja je vecji
poudarek na eliminiranju nelinearnih pojavov [1,7-10], kar pa neizogibno vodi do
matemati¢ne razprave o dobri pogojenosti in obstoju reSitve pri modeliranju
hibridnih sistemov [27]. Iz staliS¢a sodobnih matemati¢nih aspektov, modeliranje
DC-DC pretvornikov vodi do komplementarnega formalizma [13,27], ki ga je
potrebno ustrezno obravnavati. Ta namre¢ omogoca boljSi vpogled v problem
preklapljanja ter kvalitativno in kvantitativno strukturo trajektorije sistemskih stanj
[13]. Komplementarno ogrodje se uporablja pri reSitvah za drsni reZim vodenja [12],
v praksi pa se ni izkazal za zelo uporabnega [13]. Problem modeliranja zagotovo
postane Se bolj zapleten pri obravnavi pravih vezij, kjer so idealni preklopi
izkljuceni, pojavlja pa se nepredvidena ocenjena zaporedna upornost (ang.
estimated serial resistance -ESR) skupaj z razli¢cnimi spremembami parametrov
sistema.

V disertaciji bodo sodobne in omenjene metodologije ostale enake, le
kombinacija znanih orodij bo zgrajena z multidisciplinarnim pristopom. To bo
izkljucilo robni pogled iz tehnologije vodenja, matemati¢ne in racunalniSke znanosti
ali lastnosti fizicnega sistema. Kljub temu vsi ti pristopi vplivajo na metodologijo, ki
je uporabljena pri konc¢nih algoritmih vodenja. S sklicevanjem na Ze objavljene
Studije, bi lahko poudarili nekaj sovpadajocih tock.

V nasprotju z nekaterimi znanimi reSitvami mehkega vodenja PEC pretvornikov
[10], ki uporabljajo preprost mehanizem mehkega sklepanja in ad hoc uglasSevanje,
ali napredne in zapletene mehke resitve v [9], ta Studija izpostavlja hevristi¢ni
pristop k mehkemu Takagi-Sugeno [21] modeliranju. Pri slednjem zmanjsuje Stevilo
pravil in omogoca deterministicno formulacijo posledicnih funkcij, ki se nadalje
uporabljajo znotraj MPC vodenja. Nekatere novejSe izdaje [22] so se izkazale za
uspesne pri uporabi zmogljive mehke metodologije, to delo pa povecuje paradigmo
pri modeliranju hibridnih sistemov, z namenom, da bi zmanjsali sprotno (on-line)
kompleksnost in povecali uporabnost.

Eksplicitno modelno prediktivno vodenje (EMPC) zmanjSuje celotno
kompleksnost MPC-ja [6] in doprinasa novosti pri reSevanju problema »offline«
optimizacije. Enaka ideja velja tudi za »offline« mehko identifikacijo, ki (Ze v fazi
modeliranja) omeji kompleksnost, ki jo v vecji meri doprinese napredni hibridni
sistem. Pri ohranitvi podobne natanc¢nosti bodo identificirani modeli predstavljeni
kot globalni modeli. Zato lahko to disertacijo uvrstimo med Studije, ki obravnavajo
globalne sistemske lastnosti, ne pa tudi lastnosti specifi¢ne resitve [61].
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V poglavju IV bo pristop k modelnemu prediktivhemu vodenju, ki je del metode
z dvema prostostnima stopnjama, predstavljen kot metodologija in ne kot
posamezna tehnika [19], ¢eprav vkljuCuje vecino znacilnosti, integriranih v MPC.
Obravnavanje modela dinamic¢nega sistema nas je spodbudilo k uporabi MPC-ja na
osnovi mehkega modela (FMPC) pri sistemu SAS [31-33,39-41]. Na podrocju
mehkega vodenja [65] je uporaba mehke logike, kot polivalentne logi¢ne resitve, pri
odsotnosti Ciste tavtologije (poglavje III), integrirane v MPC okolje, zelo malo
verjetna.

Matematic¢ni okvir ne bo eksakten ter predstavljen kot problem diferencialne
inkluzije in komplementarnega formalizma, temve¢ bo podan z reSitvami v
psevdonormalnem vektorskem prostoru (poglavje III). Teoreti¢no je dobro opisan v
delu [28], sicer pa je elementarno povezan z aproksimacijo in operacijo glajenja
disjunktnih mnozic znotraj Lebesgue-ovega prostora.

Vedji del Studije bo izveden v okolju MATLAB/SIMULINK [29] z uporabo lastnih
(sprogramiranih) in vgrajenih podprogramov. Veliko pozornosti je bilo posvecCeno
izbiri trivialnih Matlab-ovih blokov in funkcij (ki se razlikujejo od obicajnega
objektno orientiranega programiranja), z namenom, da bi razkrili vse moZne
dogodke, ki so vcasih prikriti z naprednim programiranjem.

1.1.2 Preverjanje sistema SAS glede na njegovo globalno lastnost

Na osnovi standardnih in uveljavljenih metodologij, ki smo jih Ze navedli, so v
poglavju III predstavljene identifikacijske metode in teorija o tem, kako zmanjsati
zapletenost pri vodenju, z iskanjem natan¢nejSega modela. Poenostavitev gre v
smeri primarne dekompozicije kompaktne MPC metode na razlikovalne elemente, ki
metodo naredijo kot zmogljivo orodje vodenja. Na to vsekakor vpliva dejstvo, da je
obravnavani predstavnik sistema SAS (tj. DC-DC pretvornik navzgor) v odprti zanki
stabilen sistem. TeZava se pojavlja pri mehanizmu zaprtozancnega vodenja, ki lahko
pride v neskladje s kompaktno resitvijo vodenja. V disertaciji se osredoto¢amo na
globalno lastnost sistema, pri ¢emer ima velik vpliv kvalitativna matemati¢na
teorija. To lastnost je potrebno preuciti s kvalitativnimi in kvantitativnimi
znacilnostmi sistema. Poznavanje sistemskega globalnega prostora stabilnih tock
(kvantitativna znacilnost) bo zagotovo poenostavilo konc¢no reSitev vodenja.
Kvalitativna lastnost dinami¢nega sistema ali njegovega dinami¢nega in globalnega
modela bo omogocila celovito reSitev vodenja, ki bo vkljucCevala vse cilje.

Zaradi Zelje po ustaljenem stanju robustnega modela DC-DC pretvornika
navzgor, bo uporabljena metoda c-tih povprecij rojenja [36], ki bo omogocila
izgradnjo globalnega in robustnega modela. S tem bo informacija o stabilnem
delovnem ciklu enakovredno upoStevana za katerikoli izbor parametrov fizicnega
sistema pri v vnaprej dolocenih univerzumih diskurzov, ki so bili naravno omejeni.
Izbor univerzumov diskurzov ne vpliva na splosnost razvite metode, ampak le
povecuje njeno koncno uporabnost, kar je eden izmed glavnih ciljev.

S standardnim analiticnim modeliranjem pri aproksimaciji delovnega cikla (za
doloceno ustaljeno stanje) v omejenem obmocju [0,1] ne dobimo enakomerno
porazdeljene napake. Z ozirom na to, se naSe delo izogiba striktnim delitvam regij, ki
so relativne in mocno odvisne od izbire pripadnosti mehkega modela. Kot je bilo
omenjeno, graficni model ni polieder odsekoma afinih sistemov z ostrimi robovi,
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temve¢ kompleksna foliacija, ki jo dobimo z izogibanjem robovom in mehcanjem
nedoloc¢enih prehodov.

Nasa tako zasnovana metoda temelji na trojnem pristopu. Prvi pristop vkljucuje
prenos kompleksnosti izracuna v »offline« nacin. Pri drugem pristopu je glavni del
raziskave posvecen ravnoteznim stanjem, v globalnem in robustnem smislu. Tretji
pristop vkljuCuje spremenljivke stanj, kot spremenjene povprecne vrednosti, saj
privzema, da imamo popolnoma merljiv sistem.

Pri »offline« mehki identifikaciji, ki je predstavljena v tej disertaciji, gre za
globalno rekonstrukcijo delovnega cikla ali MISO model. Slednji je predstavljen kot
zbirka stacionarnih preslikav, lahko pa je tudi graficno povezan z razlicnimi
procesnimi parametri. Katerikoli izbor izmerjenih vhodnih spremenljivk na vhodnih
univerzumih diskurza je v celoti povezan z mehko strukturo z enoli¢nim
stacionarnim delovnim ciklom. Identificirani model je globalni in eksplicitni model,
ki predstavlja osnovo za prediktivno vodenje. Ta pristop se razlikuje od klasicnega
prediktivnega horizonta MPC-ja, saj vraca Casovno nespremenljivo resitev, ki je bolj
podobna neskonénemu horizontu, in ne zahteva izraCuna inverza funkcije. V
literaturi [9,10] avtorji obravnavajo hevristi¢ni pristop k mehkemu vodenju (ta se
razlikuje od klasicnega mehkega vodenja), ki vkljucuje mehko identifikacijo.
Nasproti poznanih reSitev na osnovi mehkih modelov [9,10], v naSem pristopu se
izogibamo striktno analiticni strukturi, ki temelji na odsekoma linearni funkciji.
Fragmentacija MPC metode nam pomaga pri izgradnji algoritma vodenja z dvema
prostostnima stopnjama (poglavje 1V), kjer linija krmiljenja z upoStevano motnjo
dolo¢a stacionarni delovni cikel, ki temelji na eksplicithnem mehkem MPC-ju
(EFMPC). Delovni cikel je nadalje popravljen z optimiziranim (za majhne signale) PI
regulatorjem.

Ta Studija pri obravnavi vseh zgoraj omenjenih ciljev predlaga in izpostavlja
hevristicni pristop, Se posebej pri reSevanju dvoumnosti modeliranja, kar jo v
sploSnem lo¢i od drugih hevristi¢nih pristopov. V psevdo-Banachovem prostoru, ki
je uporabljen s predpostavko, da je proces v celoti merljiv, lahko zgradimo
Lebesgue-jev normirani prostor zveznih trajektorij. Z izkljucitvijo Casa je v tem
prostoru mogoce ustvariti pod-prostor stacionarnih stanj (poglavje IV). Slednji
predstavlja edinstven pristop k napovedovanju dinamicnega ravnotezja, ki se
kasneje uporablja pri povecevanju krmilne dinamike standardne resitve vodenja.
Kot taka je predikcija, ki temelji na ravnoteZznem delovnem ciklu, bolj natan¢na kot
analiticna predikcija pri Sirokem spektru delovnih tock. Z namenom, da bi preucili
kvantitativno/kvalitativno lastnost sistema, smo v disertaciji predstavili edinstven
nacin modeliranja DC-DC pretvornika navzgor. To nas je vodilo tudi do razvoja nove
tehnike vodenja, ki jo imenujemo prediktivno vodenje na osnovi mehkega modela
(Fuzzy Model Based Predictive Control - FMPC). Ta tehnika minimizira dodatno on-
line procesno zahtevnost.

1.1.3 FMPC kot sinteza naprednega algoritma vodenja in
sodobnih ciljev

V tej disertaciji novo MPC metodo imenujemo FMPC, ker smo tehniko MPC
uporabili v kombinaciji z mehkim identificiranim modelom.

MPC [18,19] kot kompaktna in standardizirana reSitev vodenja za Casovno
spremenljive sistemske matrike [20], v kombinaciji z mehkim modelom, predstavlja
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napredno reSitev v smislu prilagodljivosti ¢asovno odvisnega faktorju duSenja
kriterijske funkcije. FMPC bo z izogibanjem kompleksnemu kvadraticnemu
programiranju omogocal sub-optimalno vodenje.

Zato so nas standardne MPC metode, zgrajene na osnovi standardnih konceptov
modeliranja (vhodno-izhodne oblike in prostor stanj), usmerile v kreiranje novega
in uporabnega dinami¢nega modela, ki temelji na mehki identifikaciji. Torej bomo v
nasprotju s prej$Snjim podpoglavjem 1.1.2 sedaj obravnavali mehki dinami¢ni model.
Glavni identifikacijski problem bo razclenjen na vecnivojsko identifikacijo, zgrajeno
z mehko konjunkcijo identificiranih in lokalnih linearnih modelov. Poleg
kvantitativnih lastnosti, ki so predstavljene v normiranem Banachovem prostoru, bo
novi model vkljuceval tudi kvalitativne lastnosti sistema. Zato bo omogocal boljso
vodljivost ob prehodnih pojavih.

Ceprav je podro¢je vodenja DC-DC pretvornikov Ze zelo dobro raziskano z
vidika tehnik vodenja [3], modelno prediktivho vodenje (MPC) ostaja ena izmed
najbolj pogosto uporabljenih in sistemati¢nih metod [5]. Siroka paleta aplikacij za
vse tipe pulzno energijskih pretvornikov (PEC) narekuje glavne znacilnosti
algoritmov vodenja in posledi¢cno omejuje celotne resSitve. MPC sistemati¢no
obravnava problem omejitev, hkrati pa dodatno obremenjuje procesor (povecuje ¢as
izvajanja), kar zagotovo pojasnjuje glavno pomanjkljivost metode, ki se nanaSa na
zahtevnost racunanja. Kompleksni algoritmi zagotovo doprinesejo nov scenarij
nelinearnih pojavov v prehodnem c¢asu vodenja in v stacionarnem stanju sistema,
kar Skoduje stabilnosti sistema. VeCina problemov, povezanih z vodenjem DC-DC
pretvornikov, ki so bili obravnavani v preteklih delih, je bila v smislu negotovosti pri
matemati¢cnem modeliranju PEC pretvornikov.

To vodi k novi metodologiji vodenja, imenovani prediktivno vodenje na osnovi
mehkega modela (Fuzzy Model Based Predictive Control - FMPC), ki minimizira on-
line zahtevnost obdelave. Ta regulator, v nasprotju z Ze pojasnjenim TDOF
regulatorjem, omogoca boljSo vodljivost ob prehodnih pojavih ter popolnoma
izkljucuje referenc¢ne prevzpone. Namrel, regulator predvideva asimptoti¢no
pribliZzevanje ustaljenemu stanju, obi¢ajno v skladu z odzivom sistema prvega reda.

Glavna inovacija regulatorja se kaZe v kombinaciji Takagi-Sugeno (TS) mehke
identifikacije in modelno prediktivega vodenja. V nasprotju z drugimi znanimi MPC
pristopi k vodenju DC-DC pretvornikov (predvsem najbolj razvito eksplicitno
modelno prediktivno vodenje (EMPC) [6]), ki uvajajo inovativnost pri reSevanju
optimizacijskega problema striktno »offline«, je v tej Studiji bila razvita
aproksimacija hibridnega dinamicnega sistema 2z zveznim modelom. Ta
aproksimacija temelji na »offline« identifikaciji. Prednost nove metodologije je
dvojna. Prvi¢, zmanjsuje kompleksnost s tem, da ohranja red sistema povprecno-
preklopnih modelov (red sistema se obi¢ajno dvigne z velpomenskimi
spremenljivkami [3,4,17]) in hkrati zmanjSuje Stevilo regij v robustnem smislu.
Drugi¢, metodologija doseZe boljSo natan¢nost modela za robustne in Se posebej za
fizicne primere, pri ¢emer je preklopna perioda enaka ¢asu vzorcenja. Ta metoda
usklajuje stopnjo natancnosti s kompleksnostjo ali uporabnostjo. Zato je ta rezultat
spodbudil identifikacijo sistema, ki sicer Ze ima analiticCno pridobljen model za
robustne resitve. Zvezna aproksimacija sistema je nato predstavljena v diskretni
obliki, ki je osnova standardnega modelsko prediktivnega regulatorja s prediktivnim
horizontom. Matrike v prostoru stanj za model DC-DC pretvornika navzgor niso
pridobljene analiti¢no, ampak kot ¢asovno odvisni izhodi mehkega mehanizma, ki
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hevristi¢cno povezuje predhodno identificirane regije. Kot primer denimo, da imamo
v obliki treh matrik (27x5, 3x3 in 3x3), ki so shranjene v pomnilniku procesorja,
podane, eksperimentalno pridobljene informacije o sistemu. S preprosto »online«
aritmetiko je mogoce pridobiti te informacije, ki so zapisane v polju realnih Stevil.
Vse konveksne optimizacije se izvajajo »offline«, »online« racunska zahtevnost pa je
povezana s tipicnimi problemi MPC-ja oz. v naSem primeru tudi z matrikami z
zmanjSanim rangom, ki pripadajo poenostavljenemu linearnemu modelu. Metoda je
uporabna tudi za bolj zapletene sisteme (MIMO); v disertaciji je predstavljen model
NARX MISO. Ugotovljeno je bilo, da je bil poskus z identificiranim MIMO modelom v
nasem primeru nepotreben, v smislu primerjave natan¢nosti modelov, kar je bil
eden izmed pristop pri izbiri regresijskih vektorjev.

Zgoraj omenjene trditve so bile potrjene z eksperimentalnim vrednotenjem
metodologije.

1.2 Pricakovani in originalni prispevki k znanosti

« Poglobljena analiza problematike modeliranja DC-DC pretvornikov iz
vidika nelinearnosti, nezveznosti in pricakovane stopnje natancnosti
matemati¢nega opisa.

» Razvoj novih identifikacijskih pristopov za mehko modeliranje DC-DC
pretvornikov, ki so primerni za izvedbo vodenja.

» Predlog novega pristopa vodenja preklopnih afinih sistemov z uporabo
hevristike in dvoprostosnega vodenja, kjer je predkrmiljenje izvedeno s
staticnim inverznim mehkim modelom in vodenje z regulatorjem PI.

« Vpeljava prediktivnega vodenja na osnovi mehkih dinami¢nih modelov z
majhno ra¢unsko zahtevnostjo in delovanjem v relanem c¢asu.
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Abstract

Hybrid systems control has been of great scientific interest over the past two
decades. This is mostly because of its applicability to a broad range of physical
systems, especially those resulting from technological advances. The aim of this
study is developing a pragmatic avoidance of nonlinear phenomena in the control of
hybrid systems (HSs), focusing on the subgroup of switched affine systems (SASs).
The developed control laws will propagate the heuristic approach and present the
author’s general idea for the control of nonlinear dynamical systems. The main
emphasis will be given to Fuzzy Identification as the universal approximation in the
modelling and evolving of multi-structural and global models in two directions.
First, we identify the steady and stable states of a HS and model it into the global
knowledge of a nonlinear dynamical system. Second, we identify the dynamical
model of the HS with arbitrary accuracy, which presents the system’s qualitative and
quantitative characteristics in an analytical way.

The control methods derived accordingly should emphasize the Fuzzy Model
Predictive Control (FMPC) of the HS by reducing the main drawback in the
complexity of online computing. Furthermore, the combination with suboptimal
control gives a wider applicable control algorithm, even in systems consisting of
less-powerful microprocessors. Traditionally, the simplification of a HS, i.e. the
averaging method in the modelling of electronic circuits, in which the system is
presented with an avoidance of the mixed discrete and continuous states by a simple
continuous model, as well as the modern theory of hybrid system modelling, will be
harmoniously integrated in this study. The conciliation of those two modelling
extremes affirms nonlinear identification-based modelling as the leading strategy
towards a wider applicable solution. The main idea is still to model a complex
discrete/continuous system with a continuous counterpart, but by being aware of its
complexity caused by the mode transitions influencing their final and unique model.
The systems explored are full state measurable. This condition supports the main
idea and opens the possibility to gather the system’s information by the
measurement of the complex states’ transitions (continuous trajectories and
discrete states of the system simultaneously). Later, the information remains
preserved by the final state-space transformation into the pseudo-normed space.
These ideas form a firm basis for the novel control methods and the achievement of
the defined objectives.

Selected as an example of such a system for performing the expressed
methodology, a DC-DC Boost converter is not only a good SAS representative, but a
contemporary one of the widely used power supplies, applicable in most alternative-
energy sources. Its importance has occupied various types of researchers since the
first developed semiconductors. The exclusion of the nonlinear phenomena [1,7-
10,56,57] is one of the main motivations and the objective in seeking a control
algorithm that is more intelligent, robust and economical in the use of processing
space.

The accuracy of the mathematical modelling, in contrast to the first known
modelling of the aforementioned system in the works of Cuk, Ericskon, Middlebrook
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[23,24], places the emphasis on the transition moment of the states and the
function’s discontinuity at that time. Although these problems were well recognized
in the middle of the 20th century, but no less importantly they are emerging again in
definitions of the chattering effects, the Zeno behaviour and the nonlinear
phenomena, even in the established HS methodologies.

A small signal control derived from linear theory gives satisfactory results in the
neighbourhood of the operating point, and a linearized model (Averaged-Switch
Model) opens up the possibility of a complete analytical examination. However, as
mentioned previously, to achieve robustness of the control algorithm, the theory of
nonlinear dynamical systems must have the main role in improvements to the
operating range of the DC-DC converters and SAS in general.

The hybrid structure [2,3], robust solution [3,4], natural constraints [3],
complexity reduction [5,6] and emerging problem of nonlinearities exclusion [7-10],
can all be recognized as appealing tasks for the control of a DC-DC boost converter.
State-of-the-art control solutions [3] are mostly based on Linear Matrix Inequalities
(LMIs) optimizations in hybrid systems [3,5,6], relaxation algorithms in the sense of
complexity reduction [11], complementarity formalism in reducing the modelling
ambiguity [12,13], sliding mode control [14,15] and heuristic approaches, neural
networks and fuzzy controls [10,16,138]. The latest [16, 138] work is synthesized, in
detail presented in this thesis and forms a unique and advanced control
methodology in field of SAS control as a result of excessive research done on the DC-
DC boost converter.

Keywords: hybrid system, switched affine system, nonlinear phenomena, DC-DC
converter, modelling of a DC-DC boost converter, identification of nonlinear systems,
fuzzy models, fuzzy model based identification, predictive control, fuzzy model
predictive control, fuzzy dynamic matrix control, fuzzy generalized predictive
control, fuzzy predictive functional control.
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Chapter 1

Introduction

1.1 Overview of the content of the doctoral thesis

The motivations of the study already underlined in the abstract, must introduce the
approach to fulfil all our objectives. The selected physical system is a hybrid, and can
be described by continuous and discrete states. Despite the already-known hybrid
control methods, and the hybrid modelling, as mentioned previously, this study
gives an alternative method involving the identification of a nonlinear dynamical
system. The reason for this lies deep in the theory of HS, which is progressing
towards the creation of a general modelling formalism for systems with the co-
existence of the continuous and discrete signal phenomena appearing in arbitrary
combinations [2,62-64]. The Chapter II of this thesis will provide the fundamental
definitions of HS that explains an overall deterministic approach in modelling of
those systems and based on that the main idea of this thesis. The idea will be carried
out through the thesis by problem partitioning, which is then rendered as a
threefold strategy in Chapters IIl and IV.

First, close attention will be given to the simulation in general, meaning to
develop the simulation model as close as possible to the physical system’s
behaviour, bearing in mind that the use of predefined simulation objects can easily
mislead us in our further development of the controls. In contrast, the advantage of
the modern simulation platform and the numerical integration methods will be used
to construct and synchronously simulate discrete and continuous functions of the
physical system so accurately. A knowledge of the examined model will help in the
following steps of development.

Second, the following study is carried out differently from that known in PECs to
find an accurate modelling, which also preserves a robust and general knowledge of
the system. It must provide the mathematical form that is subsequently applicable
for the well-developed control methods. The method based on a state measurable
system will transfer the main burden of a nonlinear dynamical system examination
strictly to the offline problem, with all its complexity. In contrast to what is already
known, further study will avoid the use of local linear models for a particular mode
of the system operation. It will identify the local linear model for the natural
combination of all the modes of the systems’ operation in one system’s switching
period. To realize the idea and to formalize the applicable form of the model,
dictated by the final control algorithm, two different methods of identification will
be applied. Both models will be derived by the Fuzzy Identification [34-36,65] of the
input/output data (Chapter III).

Third, the system’s examination via fuzzy identification and modelling will be a
base for a development of the advanced control algorithms. As the identification
methods and goals were different, equally the development of the control algorithms
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will evolve in the two novel control methods. Based on the model of the converter’s
steady state and using the two degrees of freedom methodology [44], the new
control algorithm will be derived. Oppositely and based on the rendered dynamical
fuzzy model, a new fuzzy model predictive control algorithm will be designed
[18,20,38] (Chapter IV).

Finally, both sides of development, the identification and control, will be tested
on the physical process and accordingly evaluated (Chapter IV). Chapter V concludes
with a short retrospective of the thesis in general and its achievements.

1.1.1 Established methodologies in seeking for an advanced control
algorithm in SAS

The methodology to be used in achieving the aforementioned objectives, later
forming the doctoral thesis, will be integrating modern and advanced fuzzy methods
in the identification and modelling, developing a novel method of hybrid systems
control. Even in the presence of already-developed advanced hybrid control
methods, namely MPC based on MLD models, LC-based control and Symbolic Model-
Based Control [6,12,13,17,26,63] (Chapter II), our methodology will refresh the
standard MPC approaches.

In this thesis, we will point out the main misfortunes of the established
methodologies that will direct our work differently.
Mainly, we have selected a MPC methodology demanding a comprehensive devotion
to the modelling of such systems. If we simply concentrate to a development of the
modern methods strictly focusing the DC-DC conversion, then we can conclude the
following.
Hybrid modelling and control represent the state of the art in the exploration and
design of Pulse Energy Converters (PECs)[3], for which the authors give a short
overview and a comparison of the profiled hybrid approaches, mostly based on LMI,
and optimization by convex programming or a Lyapunov-function-motivated stability
optimization. Systematic control approaches implement LQ optimization [42] or
H_control [4] in a sense to provide a certain robustness to the plant’s uncertainty
and are all based on a linearized sampled data model. In contrast, relaxing the
dynamic programming introduces a complexity to the optimization and opens up the
well-known Lyapunov-function selection problem [11], with a solution in time-
limiting convergence. Of no less importance is to consider the overall applicable
approaches based on current control and known as sliding mode control [14,15].

This thesis focuses strictly on output-voltage control that has a correlation with
most of the mentioned hybrid modelling approaches, but mostly it is in agreement
with the objectives in the present, PEC control development. Generally, while the
MPC [5,17] is opening the discussion of duty-cycle modelling and an approximation
with v-resolution, in this work we avoid the strict resolution that is relative and very
much depends on the Fuzzy Model Membership construction. The softening of HS
region constraints by the Fuzzy Logic evolves in the graphical model that is not a
polyhedron with sharp edges, but rather by avoiding the edges and softening
transits, it is a complex foliation. We can see that the usage of the Fuzzy
Identification has a correlation with dynamical programming [11] and the relaxation
method that produces the same findings in relation to the stability of the
optimization algorithms, the prediction of the convergence time and the stopping
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problem. This reinforces our experiences and supports the opinion that there is still
a necessity for offline optimization, even considering of modern processors’
capabilities.

To employ the advanced and established MPC, but still applicable for the systems
that are relatively trivial and fast, this thesis is changing an approach in the phase of
the system's modelling. We bring a thesis that the system’s modelling cannot be just
extruded from the final application goal and control as a mathematical task, but it
has to be a genuine part of that goal as the final physical exploitation. Chapter II of
this thesis provides a comprehensive survey, and gives several concerns in the
established modelling of SAS focusing the DC-DC boost converter. In short, and
strictly connected to the problem of a boost DC-DC converter we can pose some the
most characteristic relations to already exemplified and published. In Chapter III we
seek an alternative and identified mathematical model that is mediating the benefits
and misfortunes of the previous and known studies.

In one switching period 7, we receive multiple changes to the semiconductors’
positions and, necessarily, the circuit’s topology. Most of the previous modelling
[1,7,8] are based on the successive adding of the piecewise affine models or forming
an average-switched model well presented in the publication of Middlebrook and
Cuk [43]. The modelling solution is based on the perturbation method, and it is valid
for small signal values. Furthermore, the same authors, together with Erickson [24],
provide more precise modelling, called Ilarge signal modelling, which is also
applicable for robust applications. In today’s control solutions, more interest is put
on nonlinear phenomena exclusion [1,7-10], which necessarily leads the
mathematical discussion to well-posedness and solution existence in the modelling
of hybrid systems [27]. From modern mathematical aspects, the modelling of DC-DC
converters leads to complementarity formalism [13,27] and has to be treated
accordingly. It gives a better insight into the switching problem and a qualitative and
quantitative system-state trajectories’ pattern [13]. A complementarity framework
is used in sliding-mode control solutions [12], but with no wider control
applicability [13]. The modelling problem certainly becomes more complicated by
assuming real circuits, where the ideal switches are excluded and an unpredicted
estimated serial resistance (ESR) is encountered, combined with a different system'’s
parameter changes.

In the subsequent thesis the modern and mentioned methodologies will remain the
same, but the combination of known tools will be constructed by the
multidisciplinary view. That will exclude the corner view from the control
technology, mathematical and computer science or the physical system properties
enforced in the final application. Nevertheless, all these approaches have influenced
the methodology presented in the final control algorithms. By constructing the
cross-reference with similar published studies, we could underline some coinciding
points.

In contrast to some of the known fuzzy control solutions in PEC [10], using a simple
fuzzy inference mechanism and ad-hoc tuning, or advanced and complex fuzzy
solutions in [9], this study underlies the heuristic approach in the fuzzy modelling of
Takagi-Sugeno [21] by reducing the number of rules in the rule base and allowing a
deterministic formulation of the consequent functions further used in MPC. Some
newer releases [22] are successful in employing a powerful fuzzy methodology, but
this work is augmenting the paradigm in the modelling of the system’s hybrid nature
in order to minimize the online complexity and increase the applicability.
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Explicit Model Predictive Control (EMPC) brings novelty in tackling the
optimization problem strictly offline, reducing the overall MPC complexity [6].
Following the same idea, already in the phase of modelling, in this study, offline
fuzzy identification overcomes the complexity mostly caused by involving the
advanced hybrid system to raise the model’s degree of accuracy. By preserving a
similar accuracy, the identified models will be Global Models, whereby the following
thesis is considered to be a global system properties’ examination, rather than the
unusual properties of a specific solution [61].

It will be presented in Chapter IV that the model based predictive control
approach in the two degrees of freedom method of this thesis is emphasized as more
of a methodology than a single technique [19], but has most of the MPC-integrated
features in the compact control technique. In contrast, a rendering of the dynamical
system model will promote the Fuzzy-Model-Based MPC or simply FMPC in SAS [31-
33,39-41]. In the field of the fuzzy controls [65] using the Fuzzy Logic just as the
polyvalent logic solution in the absence of the pure tautology (Chapter III),
integrated into the MPC framework is very unlikely.

The mathematical framework will not be exact and exemplified as a problem of
differential inclusion and complementarity formalism, but rather solutions in the
pseudo norm vector space (Chapter III). Theoretically, it is strongly supported in
[28], and elementarily connected to the approximation and smoothing operation of
disjoint sets in the Lebesgue space.

The major part of the study will be done on the MATLAB/SIMULINK platform [29]
using the author’s programmed and embedded subroutines. A great deal of care is
given to the selection of the trivial Matlab blocks and functions (again different than
the usual object-based programming) in order to magnify and possibly reveal all the
natural events, sometimes masked by the advanced programming.

1.1.2 Examination of the SAS by its global property

On the bases of standard and established methodologies expressed earlier, the
Chapter III of this thesis is presenting the identification methods and theory that
overcome the complexity in controls by seeking for a more accurate model. The
simplification goes in a direction to primary decomposing of the compact MPC
method on distinctive substances that make the method a powerful control tool.
That is certainly influenced by the fact that the examined representative of the SAS, a
DC-DC boost converter, is an open-loop stable system. The problem appears with a
feedback control mechanism that can be entangled deeply with the compact control
solution. Being influenced by a qualitative mathematical theory, this thesis is
focusing the global property of the system. That property has to be examined by the
system'’s qualitative and quantitative characteristics. Having the knowledge of the
system’s global space (quantitative characteristic) of the stable points will certainly
simplify a final control solution. However, the qualitative property of the dynamical
system, or its dynamical and global model in general will give the comprehensive
control solution that integrates all objectives.

The interest in the steady-state robust pattern of a DC-DC Boost Converter will
employ the c-means clustering method [36] to build up the global and robust model.
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This is to equally contain the stable duty cycle information for any selection of the
physical system’s parameters in the predefined universes of discourses that were
naturally constrained. The selection of the universes of discourses does not
influence the generality of the developed method, but only increases its final
applicability, which is one of the main objectives.

Standard analytical modelling does not give a uniformly spread error for the duty-
cycle (for the specific steady state) approximation in the constrained range [0,1].
With respect to this, our work avoids strict region separations that is relative and
strongly depends on the Fuzzy Model Membership construction. With this approach
and, as mentioned, a graphical model is not a polyhedron of the piece-wise affine
systems with sharp edges, but rather by avoiding edges and softening uncertain
transits, it is a complex foliation.

Our thus-based method is built on the basis of a three-fold approach. First, transfer
the complexity of the computation to the offline regime. Second, concentrate the
major part of the examination on the equilibriums in a global and robust sense.
Third, by assuming a fully measurable system, involve the state variables as
transformed average values.

The Offline Fuzzy Identification presented here is a global duty-cycle reconstruction,
or MISO model as an atlas of the steady-state mappings or graphically a folium
related to different process parameters. Any selection of the measured input
variables on the input universes of discourse is associated throughout the fuzzy
engine with a single and unique steady-state duty cycle. The identified model is the
Global and Explicit Model, which then constructs the bases for a predictive control.
This approach differs from the classic preceding horizon MPC as it gives a time-
invariable solution that is more similar to the infinity horizon solution, hence being
explicitly driven without the necessity for an inverse function calculation. Also
different than a classic fuzzy control [9,10], this paper supports the heuristic
approach that implements the fuzzy identification, and after a modelling, moves
from the strict analytical framework built on the piecewise linearity. The
fragmentation of the MPC method leads us to the construction of the Two Degrees of
Freedom Control (Chapter 1V), in which the feed-forward line selects the explicit
fuzzy MPC’s (EFMPC) based steady duty cycle, further corrected by the small signal
PI optimized controller.

This study, in considering all of the objectives mentioned above, is suggesting and
underlining the heuristic approach, but only in tackling the modelling ambiguity,
which makes it different than other heuristic approaches, in general. In the pseudo-
Banach space, developed with the assumption that the process is fully measurable,
the Lebesgue 2 normed space of continuous trajectories can be constructed. With
the time exclusion, this space gives an ability to form the steady-state’s subspace
(Chapter IV). It presents a unique approach to the prediction of control equilibrium,
later used in the boosting of the control dynamics of a simple and standard control
solution. As such, the steady-state duty cycle-based prediction is more accurate than
the analytically driven one for a wide range of operating points. Subsequently, to
evolve the examination of the quantitative system’s property to the
quantitative/qualitative property, this thesis presents a unique modelling principle
of a DC-DC Boost Converter. This leads to a new control technique called Fuzzy
Model Based Predictive Control (FMPC), but with minimized extra online processing
complexity.
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1.1.3 FMPC as a synthesis of an advanced control algorithm
and the modern objectives

In this thesis, the new MPC method is called a FMPC because of the MPC technique
applied on the fuzzy identified model.

The MPC [18,19] as a compact and standardized control solution for time-variable
system matrices [20], integrating the fuzzy model and, therefore, is advanced in the
adaptive time-dependent cost function’s suppression factor and will represent the
sub-optimal control with the avoidance of complex quadratic programming.

Hence, the standard MPC methods built up on the standard modelling principles
(the input/output forms and the state space) are taking us in the direction of
forming a novel and applicable dynamical model that is also based on fuzzy
identification. Now, in contrast to the previous (Subsection 1.1.2), it will be a fuzzy
dynamical model. The main identification problem will be decomposed in the
multilevel identification, built in the fuzzy conjunction of the identified and local
linear models. In addition to the quantitative properties, similarly rendered in the
normed Banach space, a newly derived model will also comprehensively consist of
the system’s qualitative properties. Subsequently, it will pursue better
controllability in the transient times.

Even though the control of DC-DC converters has been very well examined from
different aspects with respect to control techniques [3], model predictive control
(MPC) remains one of the most systematic and frequently used methods [5]. The
wide range of applications for all type of pulsed-energy converters (PECs) dictate
the main features of control algorithms and as a result place constraints on the
overall solutions. MPC systematically handles the problem of constraints, but at the
same time puts an extra burden on the processor’s time of execution and certainly
explains the method’s main drawback, which relates to the complexity of
computation. The complex algorithms then necessarily affirm a new nonlinear
phenomena scenario in the transition time of the control and the system’s steady
state, thus harming the stability of the system. Most of the problems addressed in
previous work on the control of DC-DC converters were in terms of the uncertainties
in the mathematical modelling of PECs.

This leads to a new control methodology called Fuzzy Model-Based Predictive
Control (FMPC), but with minimized extra online processing complexity. Differently
than in the previously explained TDOF controller, the following has better
controllability in transients and completely excludes the set-point overshoots; it
asymptotically approaches to the steady state, typically for the first-order system
response.

The main controller’s innovation is found in the combination of the Takagi-Sugeno
(TS) Fuzzy Identification and the Model Predictive Control. In contrast to any other
known MPC approaches in the control of DC-DC boost converters, especially the
most developed Explicit Model Predictive Control (EMPC) [6], that bring innovation
in tackling the optimization problem strictly offline, this study builds a continuous
model approximation of a hybrid dynamical system based on offline identification.
Here, the advantage of the new methodology is twofold. First, it reduces the
complexity by preserving the system order of the averaged-switch models, usually
lifted by ambiguity variables [3,4,17], and at the same time reduces the number of
regions in a robust sense. Second, it achieves better model accuracy for robust and
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especially physical cases where the switching period is equal to the sampling time.
Finally, this method conciliates the grade of the accuracy, with either complexity or
applicability. This is why that result encouraged the approach of identifying the
system that has an already known, analytically driven and arbitrary accurate model
for the robust solutions. The continuous system’s approximation is afterwards
presented in its discrete form as the base for the standard model predictive control
problem with the preceding horizon principle. The state-space matrices are not
analytically driven for the DC-DC Boost converter, but these are time-dependent
outputs of the fuzzy engine that heuristically correlates the previously identified
regions. As the example, the experimentally rendered system’s knowledge is
presented by three arrays (27x5, 3x3 and 3x3) stored in the processor’s memory.
The simple online arithmetic extracts the knowledge written in the arrays of real
numbers. All the convex optimization is made offline, and the online calculation’s
complexity is related to the typical MPC problems, but now with the matrices of a
reduced rank of a simpler linear model. The method is applicable for more complex
systems (MIMO); even in this thesis, the presented model is NARX MISO. The
experiment with the MIMO identified model, for our example, was found to be
unnecessary, as a consequence of the models’ accuracy comparison, which was
either the approach in the selection of the regression vectors.

As a conclusion, the experimental evaluation of the methodology confirms the
aforementioned statements.

1.2 Expected and original scientific contributions of the doctoral thesis

¢ This study presents a paradigm in the mathematical modelling of a DC-DC
Boost Converter developed from the aspects of nonlinearity, the system'’s
discontinuity, and the degree of its mathematical model accuracy.

* [t develops novel fuzzy model identification principles for a DC-DC Boost
Converter that are applicable to the construction of the control methods.

* [t suggests a new approach in controls of Switched Affine Systems based on
the heuristics and Two-Degrees-of-Freedom control that defines the
feedforward line based on the inverse fuzzy model and PI controller.

* [t applies the fuzzy model predictive control methodology that minimizes the
processing complexity and the processor’s real time of execution.
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Chapter II
Hybrid systems, the modelling paradigm of SAS

2.1 Hybrid Systems

Hybrid dynamical systems occupy broad range of scientific interest. One of the
reasons could be found in the fact that the modern technology growth remains
based on digital processing, and pushing towards the infinitely short time of
executions. Indeed, that is a progress to provide as small as possible electronic
components with the less energy consumption. Allegedly it widely opens the door
for different development directions in a wider range of disciplines. As a product of
that process, it is almost impossible not to find examples of that system in our urban
surroundings, starting from a simple water heating system (boiler) to the complex
aircraft control. Mainly it is a result of human needs in the controlling of natural
processes and producing the special mechanisms or devices.

We can simply say that those systems are dated from the first appearance of the
relay. Even though they were present earlier, the main renaissances of the theory of
the hybrid dynamical systems emerged roughly 25 years ago.

The Hybrid Dynamical System (HDS) is considered to be a system built up from
combinations of naturally continuous and discrete parts.

The modelling paradigm of HDS starts with a thoughtful transformation of that
system into the completely continuous or oppositely discrete model. According to
the literature [66], and mostly because of some authors’ specific distinctions in the
approaches, we can assign groups; e.g. of those participating in the aggregation,
continuation, automata or system methods. All of the approaches just give an
arbitrarily accurate solution, simultaneously containing both advantages and
disadvantages, which is why this problem still inspires or motivates scientific
solutions. Scientists are pursuing their analysis via fully deterministic forms or
slightly relaxed with no determinism. It is demanding to give a general survey
throughout the massive literature available from the HDS realm and such a work can
be found in [2,66].

As the HDS attract multidisciplinary interest, the research contributions can be
generally recognized in typical categories: the modelling, the analysis, the control
and a design of HDS.

This thesis will contribute to the modelling, control and analysis. It is common for
modern control solutions focus on the modelling of nonlinear dynamical system.
Thus, HDS modelling is appealing by its discrete part of the system that is tangled
together with the system’s continuous or analog parts. The discrete phenomena in
HDS appear as:

autonomous switching
autonomous jumps
controlled switching
controlled jumps.

W e
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Most of the previous authors found the appropriate modelling approach driven by
different systems discrete paradigms [66]. Referring to their work, some of their
methods are named after them, e.g. Witsenhausen’s model, Tavernini’s model, the
Back-Guckenheimer-Mayers model, the Nerode-Kohn model, the Antsaklis-Stiver-
Lemmon Model, the Brockett’s model, etc. In the mathematical analysis of these
models, similarities and differences can be found [65], but commonly the main
characteristic of those methods was not the idea of forming the general framework
or methodology in the modelling of all HDS. In contrast, those attempts are rather
specifically oriented methods driven by the final goal in the system’s application.
Modern methodologies are driven by the generalization in the theory of HDS;
accordingly, this thesis is supporting that approach. Of course, that generalization
will have its topological varieties applicable in the wider range of HDS.
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Fig. 2.1 Structure of hybrid system

Our approach in modelling emphasizes that idea, but at the same time amplifies the
importance of switching phenomena in the modelling, very much in common with
the old methodologies. As the HDS is a broader realm, it is even today very
controversial with regards to group specific modelling approaches, and is rarely
comprehensive. We are going to point out a few the most distinctive approaches [2]:

e hybrid automata

e timed automata and timed or hybrid Petri nets

* PWL and PWA

e switched systems

« differential automata

e mixed logical dynamical models

e real-time temporal logics and time communicating sequential processes
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e complementarity systems
e hybrid inclusions.

Fig. 2.1 is very common for the explanation of the hybrid system’s nature; it can help
us in presenting the main approaches in HDS model classes. Modelling differences
are mostly related to the correlation between the continuous variable subsystem
and discrete event subsystem. The interaction leads are presented by “discrete-to-
continuous interface” and “continuous-to-discrete interface”. The first is defined by
the discrete system'’s state change, also called an injector. In contrast, the second is
an event generator usually referring to the continuous trajectories hitting the
switching surface.

2.1.1 Hybrid automata

The most comprehensive modelling approach of hybrid systems is the Hybrid
Automata. Branicky [62,66] in his survey of modelling of hybrid systems found it as
a distinctive way of pursuing the hybrid systems’ modelling by automata. The theory
of hybrid automata is a continuation of studies of the finite state machines and
evolves by integrating the continuous and discrete dynamics together into the
infinite state machine.

A milestone in the definition of the hybrid automata was in Henzinger’s “Theory of
the Hybrid automata” [62], and consisting of: variables, control graph, initial,
invariant, flow condition, jumps and events.

We are more in favour of a definition that is more broadly applicable, in the form
presented by Definition 2.1 [2,62,63].

***Definition 2.1**[2] (Hybrid Automaton) A hybrid automaton H is a 10-tuple
H = (Q7X,fvlnit,lnv9®769/?) 2’)\’)7

where

* 0 =(q,,....q,) is a finite set of discrete states (control locations);
* X =(x,,....x,) is a finite set of continuous variables;

x*  f:0x " —=H"isan activity function over X;

% Init CQ x [" is the set of initial states;

# Inv:Q — " describes the invariants of locations,

¥ O C Qx Qis the transition relation ;

x GO —2"" isthe guard condition;

x R.O—=2" x2% isthe reset map;

% 3 isa finite set of sinchronization lables;

% N:0© — 23 isthe labling function .

The automaton H describes a set of hybrid states (q.x) EF = Q x [".

This form is generalized for the hybrid system with more advanced topology built on
the multiple hybrid automata. Further on in those constructions the weight is given
to the synchronization and time in general. The theory of hybrid automata evolves in
the approximated symbolic models for control. Mathematically based on the theory
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of sets, it can be proven that those approximations are having arbitrarily accurate
similarity to the real systems. In a literature, the definition of hybrid automata
appears in different forms motivated by authors’ scientific discipline. For example,
from the aspects of the systems’ control, and following observations of the
fundamental hybrid systems (not composed of more than one HS), it is formulated
and can be found in [63].

Theoretically, with hybrid automata we can define all hybrid dynamical systems
bearing in mind that most of them are a combination of the characteristics of the
finite-state and the infinite-state systems. Certainly, it is a nontrivial task to define
the tangled guards, invariants and reset maps for such a system.

Therefore, this troublesome task can be simplified by partitioning of such a system
into a multiple finite-state system of the reduced complexity. Besides mentioning the
most fundamental the linear hybrid automata or the rectangular hybrid automata as
a unified hybrid constructive element of a more complex hybrid system, we can also
point out in the literature [63] some other simpler modelling cases: Transition
Hybrid System and the Timed Automata. Those systems are used in providing of
feasibility to cumbersome methods of verification and synthesis (Transition Hybrid
Systems) or in giving the profundity in systems containing the clock variables
(Timed Automata).

2.1.2 Piecewise affine (PWA) system

It should be highlighted that the fragmentation of the complex nonlinear systems
unconditionally brings into focus PWA systems as the one of the basic hybrid
modelling approaches. The system could be naturally PWA, but frequently is also a
product of a problem partitioning. As mentioned earlier, different strategies in the
modelling and classifications of a hybrid dynamical system can be divided in two
main directions. The first is generally modelling of the hybrid dynamical system
from the hybrid natural aspects of tangled evolution of continuous and discrete
states, posed by the theory of hybrid automata. The second, motivated by the
applicability of the theory of hybrid dynamical systems, is based on distinctive
system constraints and particularities. Hence, the latter is a direction that certainly
simplifies the analysis and control of such a system. From that perspective, we are
presenting distinct hybrid model types starting with PWA systems. The state space
expression in (2.1) presents the PWA modelling form.

x(k +1) = Ax(k) + Bu(k) +v,

y(k) = C;x(k)+ Diu(k) +w; (2.1)
for €Q, Q, - convex polyhedra
u(k)

The subscripts in expressions denote the hybrid regions i €{1,...,m}, where the finite
number m does not necessarily coincide with the system order.

To clarify the expression, we have to subsequently introduce the basic definitions of
PWA systems already known in literature [67]. 4, B, C, and D matrixes are the state
space matrixes of an appropriate dimension, while the x, y and u denotes the states,
the output and the control or input variable respectively. All variables in general are
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vectors of the arbitrary dimensions. Further on v; and w; are functions that present
a non-modelled dynamics, mostly connected to the system noise.

***Definition 2.2**[67] (PWA, PWL) Consider the function f over the polyhedral set
Q.

f:Q—=[" with n€WN is piecewise affine (PWA), if a partition {Q}", of set Q exists,
such that f(x)=Ax+a; if x€Q,. Further, if a, =0 the function is called piecewise
linear (PWL).

***Definition 2.3**[67] (Polyhedron, Half Space and Vertex Representation ) the
polyhedron is a set of the form

UH={xeR"lax=b, i=1,..,m} (2.2)
or, equivalently;

0={x=V+llinl D¢ =1,{=0,1-0} (2.3)

where {=[{,{,...,,1" and m=[nm,..m,]". The equations (2.2) and (2.3) are

presenting the polyhedron in two different ways, ie. as the intersections of finite
number of halfspaces, and as the set addition (Minkowski sum) of the convex hull of the
columns of the matrix V, and the conic hull of the columns of the matrix I,
respectively. The columns of matrix Vare called vertices of the polyhedron, and the
columns of the matrix lll extreme rays.

A polytope is bonded polyhedron and it can be represented by

0={x=VlI D¢ =1,¢=0}. (2.4)

Analogically the representation of the polyhedron in the form (2.2) is called the
halfspace and in the form (2.3) the vertex.

***Definition 2.4**[67] (Polytopic/Polyhedral Partition) A collection of
polytopic/polyhedral sets {ll.}" ={U U,,...U } is a polytopic/polyhedral partition of
polytopic/polyhedral set Q C F" if

DU N ce

i) (W, \[AJp W, \[3(1) =, Vp=qlpg=12,..,m, [l - denotes boundary of N

iii) if [Jpﬂ[Jq =, where p =g, then [Jpﬂ[Jq is a common face of / ,and {,.

Thus, the equation (2.1) is a lifted model of the PWA system from Definition 2.2,
taking into consideration the extension for a vector space of inputs that are in the
same convex polyhedral U, 2 CQ for n=m .
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2.1.3 Switched Affine System (SAS)

For the above-presented PWA system, it is a hard assumption to expect that for all

arbitrary initial conditions x, €€ our trajectory f(x) will stay bounded in the one

polyhedral partition €. More likely in the natural cases, for a certain initial

condition, the trajectory will violate two or more borders of regions defined by £

for i =1,...,m. In the subsequent theory, we will constrain our interest in the finite set

2 =Q. The switching of regions causally brings the paramount theory of that
l

effect. Allegedly, this effect, brings fundaments for further distinction in the
modelling of hybrid dynamical system. Even though it could be said that some of
these switchings do not characterize the hybrid system, we cannot separate it from
its hybrid nature. Rather pragmatically, the switching is an event for the more
distinctive theory of HS, starting with this question: is it for an autonomous
switching and jumps or for a controlled switching and jumps?

Figure 2.2 is a concise graphical representation showing the autonomous and
controlled switching.

X X=f () X2
Sl
XeQ, X':fl(x) \
XI
XeQ,
a) b)
Fig. 2.2 Autonomous (a) and controlled switching phenomena (b), graphical
representation

Therein the control of switching is assigned with the switching surfaces S, and in
contrast to that the natural switching surface or border between the two vector
fields f,(x), bounded in the sets of states €2, is an unassigned line. Further on, the
terminology connected to the autonomous switching system is frequently
characterized by switching affine systems, but opposite to that the systems with the
controlled switching are assigned to be Switched Affine Systems (SAS). The SAS do
not exclusively consider controlled switching, which means that those systems
include the natural and autonomous switching happening with uncontrolled manner
while intending to control the system. This kind of effect, and SAS in general,
motivates the subsequent thesis.

In the state space, the SAS systems are defined by the most general expression and
hence
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x(k+1) = f(x(k),u(k).q(k))

. (2.5)

y(k) = g(x(k),u(k).q(k))  for x(0) = x,
We see that the expression (2.5) is an augmented version of the general discrete
state-space by the function of states g(k) modelling the hybrid nature. Subsequently,
we will mostly rely on the discrete system representation and equally treat the
control systems as a discrete time control. As mentioned earlier the function ¢(k)

denotes the switching logic caused naturally or done by controls. The equation (2.5)
evolves into a more distinctive form

Ye(k) = Cipoyx (k) + Dyt (k) + Wiy, for k€ L”
(2.6)

where index ¢ means that the equation is the discrete counterpart of the continuous
system representation. Further on, x. EXC A", y €Y CH"™, i(k)EQ ={l,...,m}
and denotes the region or the mode of a system’s operation that is in the closed and
finite set of the integer numbers, including the set of the state-space matrixes
{A,,B,,C,,D,} and functions v,,w, that denote the undefined dynamics.

The final and relaxed hybrid structure of the SAS is presented by

[ Ax.(k)+Bu (k) +v, if i(k)=1
+

2k+1) =1 + . (2.7)

A x (k)y+B u (k)+v, ifi(k)=m

m--c

We must underline a distinction in variables of the continuous states x, and the final
variable of the hybrid model trajectory evolution z, which is more closely defined in
Chapter IV.

The term “relaxed” is used because of the presentation of time, which is not the
hybrid time, but rather discrete time. It can easily be concluded that the hybrid time
evolution (from the set of real numbers) could be transformed to the discrete time
(the set of natural and positive numbers) by the assumption that the sampling time
is infinitesimally small.

Although the time category is diminished above, this thesis is magnifying the
recognition of the time of hybrid trajectories’ progressing. The time role is differing
our hybrid systems in a group of synchronous discrete state progressing or
asynchronous discrete state progressing hybrid systems. The latter is
characteristically related to the definition of the hybrid automata, while the
synchronous modelling is more common in the control technology. Furthermore, it
is ubiquitously observed and exemplified in different disciplines. The assumptions
taken in the analysis and synthesis of this type of SAS resolve the problem of Live-
lock* and Zeno* effects that are common for HS. Theoretically, this statement is
proven in the literature [68], but in a natural system it is rather unlikely. The

* Live lock is an effect of infinite switches in zero time. Zeno is an effect of infinite switches in finite time.
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problem appears in the instant discrete changes, which is just a theoretical
reconstruction of infinitesimal time, but in the natural events still a real value. In the
nonlinear phenomena scenarios, it presents a too coarse assumption, beyond
determinism, and only the convention makes the infinitesimal time instants
negligible.

Nevertheless, the system theory based on the abovementioned assumption is
rendered by the theory of Discrete Hybrid Automata (DHA). The theory tackles a
missing part of the equation (2.7) referring to the logics of the discrete variable i(k).
Hence, three additional mathematical objects define the logic: Event Generator (EG),
Finite State Machine (FSM) and Mode Selector (MS). Figure 2.3 presents a DHA by
the block diagram.

Event <
Generator
(EG) < x(K)

0elk)

ur(k)

71

Finite State Machine

x (k)
(FSM)
s A 5 |
y ok
Xblk) Clock Switched
Affine
xp(k) z! Systems (SAS)
Mode Selector

Xp(K) R (MS)

wk | =Do— i(k)

Oe(k)

> | =D

Fig. 2.3 Block diagram of a DHA system [2]

A decision on linear affine constraints (true/false) in the form a’x_ (k)+b"u (k) =<c
is given by the logic signal

0, (k) = fr (x (k),u (k),k) (2.8)

as a function of a linear hyperplane f, : X, xU, x /" —D C{0,1}", resulting in the
vector of Boolean variables of a length n,. Posed by the mathematical logic, the
equation (2.8) is a combination of two statements:

16,/ (k) =1]<> [a"x (k) + b u_(k) = c,]

. (2.9
[6,'(k) = 1] <> [KTy = 1,]

The first is referring to the threshold event and the second to the time event or
synchronization. In equation (2.9) i denotes the i' component of the vector §,(k), T
is a discrete system sampling time and ¢, a starting time. A mathematical object
producing this vector is called an Event Generator.
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The Finite State Automaton or Machine is a discrete dynamical process changing its
states by an endogenous logic function

xp(k) = fr(x, (k) u, (k),0, (k) (2.10)

where x,(k)eX, €{0,1}", exogenousu,(k)e€U, C{0,1}"*and the 6, (k)is the
endogenous input coming from the EG. This logic automaton has an associated
Boolean output

Yy (k) = g5 (x, (k),u, (k).0, (k)  y,(k)EY, {01} . (2.11)

The final confirmation and action taken, resulting in the switching of SAS, is done by
the Mode Selector function

i(k) = f (x, (K1, (K)8,(6)) oy : X, xU, x D—0Q. (2.12)

This tool certainly forms the framework for a further investigation of the SAS based
on the current computational resources, meaning hardware abilities related to the
microprocessors, computers or industrial PLCs. A DHA approach will be used in this
study to construct the simulation model as the closest approximation to the physical
process by taking the sampling time ¢,,,»; as short as possible and limited by the
maximal resolution of the simulation tool. It will be taken into consideration that
DHA simulation time ¢,,,,, <<T;, where T is a sampling time of the physical
system in general (practically difficult to achieve for the processes with a high
natural frequency, and that is a fact in the example of this thesis). Authors defining
the above theory of DHA are also the most involved in developing of the
programming language HYSDEL [29] that is the tool in the modelling of the
applicable class of hybrid systems, also known as Mixed Logical Dynamical (MLD)
systems.

2.1.4 Mixed Logical Dynamical (MLD) systems

A theory of SAS and modelling of the nonlinear dynamical systems with that
methodology has deep roots in the modern mathematics and computer science.
Feasibility in simulating and solving our modelling demands is directly related to
current computational capabilities and also unconditionally constrained by discrete
processing. Basically, human reasoning and building of the likewise inference engine
relies on the mathematical logic. The most fundamental mathematical logic is
Boolean algebra or more generally called the Propositional Logic or Calculus. Wider
and richer logic, also consisting of propositional logic is Predicate Calculus or in
some literature called First Order Logic [69,70]. These two mathematical tools
compose the logics’ framework for a further development of mathematical
algorithms used to resolve our modelling paradigm. Thus, in the system classes,
where modelled by MLD systems, we use the conventional propositional calculus to
model the logical parts of processes as on/off switches, discrete mechanisms,
combinational and sequential networks. Our physically operating events that
include dynamics and logic have to be modelled in statements: that is, to agree with
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the toolbox that we have available. Consonant to the SAS, especially if we consider
the switched affine linear systems, our modelling bases on the mixed-integer linear
inequalities. Thus, the presented strategy evolves in the computational algorithms
known as Linear and Integer Programming.

Although, Linear Programming is naturally connected to the optimization
algorithms, it is an unavoidable tool in current control theories, e.g. minimization of
the performance index in the Model Predictive Control. To clarify, the basic tool in
transforming the physical problems in the mathematical or (precisely) the formal
semantics will be presented here.

The problem of the maximizing or minimizing of a linear expression, subject to a
number of linear constraints that take the form of linear expressions a,x; ~ ¢, where
the conjunctive condition ~E{=<,z,=} is a Linear Programming (LP). Subsequently
the Integer Programming (IP) is restricted LP by the employment of integer
variables. On occasions when the integer variables are used partially, the
programming is called Mixed Integer Programming (MIP).

Most practical modelling approaches restrict the integer variables on 0 and 1, so the
MLD is one of the good examples. That restriction cannot be considered hard, as we
know that any integer can be binary coded. Once the integer variables 0 and 1 are
used, one can easily represent the propositional logic statements and decision based
on YES/NO. A typical integer variable 6, is introduced that has to lie in the range
from 0 to 1 and restricts it to two values §,E€{0,1}. Table 2.1 is consisting the
propositional calculus’ connectives transferred to the integer variable constraints.

Logic 0/1 integer
connective | constraints
v 0,+0,=1
A 0,+9,=2
- 6,=0
- 0, =0,
< | 0=9
@ 0,+0,=1

Table 2.1 Transformation of logic connectives to the 0/1 integer constraints

Except for transformation of logic connectives to the integer constraints, it is
necessary mostly in the physical systems modelling, but also for the computational
feasibility, to provide the lower and upper bounds to our linear expressions

miszaijxj =M, . (2.13)
j

If that is impossible in the some of the examples, then the condition may not be
possible to express by MIP. In equation (2.13) we are omitting the strict inequalities

“«_n “u _n

assigned by “<” or “>” as it is important to provide the maximum M and minimum m
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to the linear expression. Otherwise, in cases in which the strict inequalities are
present, then our bounds become the suprema (least upper bound) or infima
(greatest lower bound). Despite the non-strict inequalities, we have to provide
bounds with a realistic degree of approximation denoted by the symbol ¢
(infinitesimally small number).

In the following example, the main idea can be easily verified.

Example 2.1
Represent the following conditions

Eax =c,] =6, =1]

ijr l

[0, =1] = Eax =c]

/M)

iii. Eaux <c, ] [6, =1]
by the IP involving a §, €{0,1}.

For better understanding, the truth table of the logic implication has to be known.
Usually it is more convenient to have the simpler expression from the left-hand side
so the logic expression (i) will be negated and imposed by

[0, O]e[zal}xj >c,]. Furthermore, as mentioned, a strict inequality will be

« n

omitted and the more convenient condition sign used. The final logic expression
is derived to [§;, =0] —[- an j=<-c,—¢]. We see that the right-hand side has to be

relaxed by number ¢ to agree with the non-strict inequality.

At this moment, we have to use the minimum m, < Ea,jxj in order to provide the

certain truth on the lowest border of the linear expressmn It is certain that the left-
hand side of the inequality will be satisfied (if the solution is feasible) by
-m, +c,; + & <0.Now we can construct the IP expression of (i) that is

Eal]x]+(m -c,—€)0,s—c,—€. (2.14)

The condition (ii) has already been in the convenient logic form with the non-strict
inequality. We start with the certainty on the top border and use the

max1mumEaUxJ_M which suffices to express O0=-M,;+c,. Hence, the IP

expression of (ii) is

Eaux] +(M;-c)8, =M, (2.15)

The third condition (iii) has to be expressed by both IP derived expressions (2.14)
and (2.15).
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Moreover, very often in the modelling of dynamical systems, where the products of
continuous and discrete variables are handled, it is necessary to introduce the
auxiliary variables. The difference is whether we substitute the product of logical
variables or mixed product of the continuous and logic variables [26]. Namely, the
product of logic variables 6,0, can be substituted by 6, = 6,6,. Thus,

[0, =1] =[98, =1]A[J, =1] and further the equivalent inequality expressions are

-6,+0,=0
(06, =60,) =1 =6,+5,=<0 . (2.16)
6,+0,-0;=<1

Therefore the mixed product & f(x), where f:[{" —/f and 6&{0,1}, can be
replaced by an auxiliary real variable y =98 f(x) that satisfies [6=0] —[y =0] and
[6=1] —=[y = f(x)]. If we recall now (2.13) and assumed that linear expression is
replaced by the arbitrary function in the space of real variables then the following is
equivalent:

y=<Mod
y=md
ys f(x)-m1-06)
y=zf(x)-M(1-9)

(y=06f(x)= (2.17)

The above-presented tools suffice in constructing a final mixed logical dynamical
model in state space:

x(k +1) = Ax(k) + Bu(k) + B,8(k) + B,z (k)
y(k) = Cx(k) + Du(k) + D, (k) + Dyz(k)
E,8(k) + E,z(k) < Eu(k) + E,x(k) + E.

where (2.18)
x(k) = xCT(k) , x (k)ef™, x,(k)e{0,1}™,
[ x, (k)]
u(k) = uCT(k) . u(k)ER™, x,(k)E{0, 1},
[, (k)|
]
y(k) = ycr( : , v ()ER™,y, (k)E{0,1}™
LY (k)

z(k)EF™, d(k)E{0,1}",

In model representation (2.18) the subscripts b and c are respectively presenting
the logic/binary and continuous states, the z(k) denotes an auxiliary real variable
earlier in (2.17) assigned by y. All A,B,,C,D,, and E, are the state space matrices of
the suitable dimensions to suit the vector lengths denoted by n,m,p and r.
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2.1.5 Linear Complementarity (LC) Systems

Throughout the above presentation of the different classes of the HS we intended to
progressively present the development of the modelling paradigm in the direction of
its applicability on a wider range of physical systems. From the complete theoretical
and conventional approach of modelling of HS by hybrid automata, characteristically
formalized by mathematicians, the modelling approach more based on physics can
be recognized in the theory of complementarity systems [27]. While the DHA and
MLD systems are fundamentally related to the computer science and programming,
we found the complementarity systems’ modelling to be a more applicative and
generalized approach.

As earlier presented in MLD systems, and their relation to LP and IP, the modelling
paradigm of complementarity systems is related to the mathematical programming
problem called Linear Complementarity Problem (LCP).

Similarly to the MLD system, this class of systems also consists of inequalities
combined with the differential equations.

The LCP is defined as follows [17,72].

Given a matrix M €™ and g€ M" , find u,y € A" such that

y=qg+Mu

. 2.19
O<sylu=0 ( )

Thus, the expressed problem is usually denoted by LCP(g¢,M) . Therefore, the
conditions y=0,u=0, u'y =0 are called complementarity conditions that are
collectively presented in (2.19). The pairs (u,y) are called complementarity

variables. From the linear algebra and matrix classes the existence of solutions is
derived.

***Theorem 2.1**[71] If M ER/"™ s positive definite, then the LCP (q,M) has a
unique solution for all g€ [{" .

***Definition 2.5**[71] A matrix M /"™ is said to be P-matrix if all its principal
minors are positive. The class of such matrices is denoted P.

***Theorem 2.2**[71] For a given matrix M €™ , the problem LCP(q,M) has a
unique solution for all vectors g €{" if and only if M is a P-matrix.

From the above results in the literature [71] the following modelling paradigm is
formulated. The LC system is provided by the simultaneous continuous equations

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) . (2.20)
O=<y(r) Lu(r)=0
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The functions u,x and y take values in A", [i"and /A" respectively; A,B,C and D
are matrices of appropriate dimensions. We see that values in u and y have the
same dimensions and it has to be stated that for every component of those vectors
i=1,..,n either u,(f)=0 or y,(#)=0. The set of indices for which y,(r) =0 is called
mode or active index set and may change during the system’s time evolution. This
statement coincides with the aforementioned HS modelling formalisms as the
system'’s operating mode.

However, the expression (2.20) and complementarity conditions of the variables
(u,y) have great potential in applicability on a wider range of physical systems. We
can easily recognize that the nonnegativity and orthogonality of two variables have a
physical equivalence with the ideal diode (current and voltage) and ideal valve (flow
and pressure). Except in the electronics and hydraulics, it is applicable in other areas
of engineering. The comprehensive expertise of the linear complementarity problem
pursued on mechanical system of two rigid bodies is given in [71]. For a long time,
this modelling approach was closely connected to the ideal switching control
schemes; in the later work of Schaft and Schumacher and after Vasca [13,27], the
authors give a new insight to this formalism.

They underline that when the ideal switching scheme is considered, the well-
posedness of the resulting closed-loop systems may easily fail. This is quite in
contrast with the solution when the smooth control is applied. The ideal switching
is naturally impossible to achieve. This statement must present an intriguing
objective for systems with the fast refreshing time rates, and is also one of the basic
motives for this thesis. The well-posedness is proven on bimodal systems [72-76],
and it is known to be hardly sufficient for wider applicability.

Schaft and Schumacher, as authors with a great contribution in the field of hybrid
systems, particularly in complementarity systems, augment a problem of discrete
states (locations) that are actually the product space obtained by combining several
switches. It is revealed that in many cases, the dynamical systems associated with
different locations will not be completely independent, but will rather have many
equations in common. These observations guided the authors in the direction of
product decomposition of HS.

Generally, the core dynamics are

F(z(1),2(1)) =0 (2.21)

that form the dynamics of each particular location, for the vector
z(t)EM" containing all continuous variables of the system. There are k switches,
with a finite set A, of the possible positions associated with each switch i ={1,....,k} .
In turn, we see that each combination of the switch positions gives rise to a different

state, so the set of locations is the product []*,A,. If we assigned each position of

i™ switch with s, then the additional dynamics, rising for the particular location

have a form
G (z(1),z(1)) =0 . (2.22)

The set of invariants will be formed as
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H}(z(1) =0 (2.23)

and present all the inequalities corresponding to the switch position together.
Arising rules from the above formulations;

i) All switches are binary, i.e. A; ={0,1} forall i.

ii) All additional dynamic equations corresponding to switch position are
algebraic and scalar, ie. they are of the form g °(z(#))=0 where
g A" =M.

iii) Also, the invariants corresponding to switch positions are scalar, so they are
of the form 7,°(z(¢)) =0 where 4 : " = /.

iv) The functions defining the additional dynamics and the invariants associated
with each switch position change roles when the switch is turned; i.e.
gio(z(t)) = h,-l(z(t))and gil(z(t)) = hio(z(t)) for all i as the complementarity
condition.

Systems that can be described according to the above rules are called
complementarity systems.

For clarity, we assigned two substitution variables y, = gio(z(t)) and u, = hio(z(t)) to
the complementarity condition functions. These substitution variables are forming
the general complementarity variables. The core dynamics in this general
complementarity formalism are functions over the continuous variables z(¢) that
consist of the arbitrary combinations of states, input functions and outputs
() = (X[, Xy, dly Uy oo Y [V 5eee) -

In some of the new releases [2] the complementarity formalism receives a more
compact form that evolves from the (2.20) to

x(t) = Ax(t) + Bju(t) + Ev(t)
y(t) = Cx(t) + Du(t) + Fv(t) . (2.24)
O=<y(r) Lu(r)=0

Equally as in (2.20) the A,B,C,D,E and F are matrixes of the suitable dimensions
and v(t) is the forced variable mostly used to model the additional noise in the
system. Further generalization of that form enriches the expression (2.24) in order
to allow the incorporation of equality and inequality together.

The complementarity relation takes the following form

Csy(t) Luiel . (2.25)

where [ isaconein /" and L is the dual cone defined by

C'={ul(y,u)=0 forall yEL}
(2.26)

Taking in consideration the overall generalization of the complementarity systems
in equations (2.21)-(2.23), where the complementarity pairs are not necessarily the
state and input variables, the LC system in discrete time is expressed by
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x(k +1) = Ax(k) + Bju(k) + B,w(k)

y(k) = Cx(k) + Du(k) + D,w(k)

v(k) = Ex(k)+ E,u(k)+ E;w(k) + g, . (2.27)
0=<v(k)lwk)=0 v (k)wk)=0
v(k),w(k)E R’ — complementarity variables

It is imposed that (v(k),w(k)) denotes the complementarity pair, while A,B,,C,D,
and E, are the matrixes of the suitable dimensions. The residual and non-modelled
part in the expression (2.27) that gives the relations of complementarity variables is
denoted by g, .

The LC systems are also upgraded to the Extended Linear Complementarity systems
(ELC)[2,25]. The main difference can be found in the ability of incorporating the
system’s inequalities directly instead of transferring them to the complementarity
conditions by using the slack variables [25].

Further on, there are other distinctive and established modelling principles and
hybrid system examples, e.g. max-min-plus-scaling (MMPS) [2,25] that can also be
presented as an equivalent expression to the already mentioned [2,25]. Because of
their reduced applicability to the SAS, in this thesis, they will be omitted.

2.2 Problems in modelling of HS

Inherently, the HSs are nonlinear and non-smooth, so the problem appearance must
be viewed from that aspect and knowledge. Additionally, the hybrid systems have
inherited some anomalies directly from the grade of accuracy of the applied
modelling and control. In this section of Chapter II, we will point out both. First, we
present some of anomalies that are strictly connected to the basic formalism in
hybrid systems, arising from the above explained most recent methodologies in
modelling of HS. Second, taking in consideration that HSs are nonlinear dynamical
systems, we present some typical and general nonlinear phenomena.

2.2.1 Hybrid Time Sets, Executions and Zeno effect

Particularly the Hybrid Automata, but also in general the Hybrid Systems involve the
continuous states determined by differential equations and discrete states by
difference equations. From the physical point of view the continuous states can be
considered as a “flow” and the discrete ones as a “jump”. However, to characterize
the evolution of the states one has to think of the set of times that contains both the
continuous intervals and the distinguished discrete points at the time a discrete
transition happens. This time set is called hybrid time set [78].

***Definition 2.6**[78] (Hybrid Time Set) A hybrid time set is a sequence of intervals
T ={l,1,....I1,.} ={I,}, finite or infinite (ie. N = «is allowed) such that

i) I, =I[t,7;] foralli<N;



25
Hybrid systems, the modelling paradigm of SAS

ii) if N <o then either I, =[t,,ty]lor I, =Ity,,,Ty, ]; and
i) t, <t =1, foralli.

4
T, T
2 ts %
T,=1,
1 tSE t, }
T, T,

ot Tt
O 1 —‘ 2

L] t

T(] ’C()

Fig. 2.4 Ahybrid time set T = {T,,T;}}_, [78]

Figure 2.5 explicitly shows the hybrid time progression in the time set.
There are two main characteristics of the hybrid time set shown in Figure 2.4. The
right endpoint of the interval i coincides with the left of the interval i + 1. That fact

makes it possible to have two instants (i.e. labelled 7, and 7; ) instantaneously. In
other words, the discrete transition is assumed to be instantaneous. Furthermore,
this convention allows the ability of multiple discrete transitions at the same instant,
inwhichcase 7;_, =7, =7, =7, .

Based on the presented convention, the mixture of discrete and continuous state
must be defined as the evolution of the hybrid system in the defined time set.

***Definition 2.7**[78] (Hybrid Trajectory) A hybrid trajectory is a triple (t,q,x)
consisting of a hybrid time set T ={I}) and two sequences of functions q={q,(-)})
and x ={x,(-)} with g,:1, =Q and x,:1, = R".

Above Definition 2.7 must be considered by the restrictions in the sets defined in
Definition 2.1 similarly as in Definition 2.8.

***Definition 2.8**[78] (Execution) An execution of a hybrid automaton H is a hybrid
trajectory, (t.,q,x), which satisfies the following conditions:

i) Initial condition: (q,(0),x,(0)) € Init
ii) Discrete evolution: for all l
(4,(1).9,., (T, ) EB, x,(1)EG(q,(7)).q,,,(7,,,)), and
X(T) ER(G(T).q,, (Ti+1.)’xi(ri))-
iii) Continuous evolution: for all 1,
1. q,(-):1,—Q is constant over t€I, Le. q,(t)=q,t;) for all
1EI;
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2. x,():1, =X Is the solution to the differential equation
X, = f(q,(t),x,(t)) over I, starting at x,(t,); and
3. forall t€[t,,T;), x,(t) EInv(g,(1)).

The restrictions (condition iii)) imposed by Definitions 2.7 and 2.8 are evolving into
the definition of the classification of executions.

***Definition 2.9**[78] (Classification of executions) An execution (t,q,x) is called:
= Finite, if 7 is a finite sequence and the last interval t is closed.
= Infinite, if T is an infinite sequence, or if sum of the time intervals in T is
N
infinite, i.e. 2('5; -T,) =,
i=0
= Zeno, ifit is infinite but Y,(t; -T,) < %
i=0
= Maximal, if it is not strict prefix of any other execution of H. (strict prefix
means that one of two different time sets t is shorter and not equal to
another).

A
\

/

3 /
s
—

2 u ) =
H 1 —

- 7 .
O ] . 0 ]

E — T

Fig. 2.5 Two examples of Zeno executions for time sets T, and T, [78]

Figure 2.5 graphically presents the Zeno execution, which is considered to be the
unwilling or the ill hybrid system’s condition. Zeno behaviour is the phenomenon
that in a dynamical system an infinite number of events occur in a finite length of the
time-interval. It prevents the existence of global solutions, and it is directly related
to the well-posedness, as the existence of the solutions given an initial condition.
The problem of Zenoness is not harming just an analysis of the hybrid systems, but
also the simulations. Most of the time, this problem is already resolved in the
simulation programs and it is hardly noticeable. But the existence of that anomaly in
HS modelling must be considered seriously, especially because of its impact on the
further analysis and synthesis into the control systems.

For a deterministic view of the presented problem, it is crucial in hybrid systems,
but also in the general dynamical system to define the uniqueness and existence of
the solution. Thus, in HS one has to define if from the initial state (g,,x,), there is the
reachable state (g,x) for any of the executions.
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***Definition 2.10**[78] (Reachable state) A state (q,x)EQx X of a hybrid
automaton H is called reachable if there exists a finite execution (t,q,x) ending in

(@.%), Le. T ={[t,,T;]}), N <o, and (q,(t}),x,(t})) = (§,%).

In the continuation, we define the reachable set that consists all reachable states:
Reach € Q x X of a hybrid automaton H, that initially satisfies Init C Reach.

By recalling the restrictions from the Definition 2.8, and related to the continuous
evolution, the possibility must be considered that for some of the states the
continuous evolution is impossible or immediately for some of the states violate the
Inv set. Those states are forming the set Trans that consists of all such states called
transition states.

The definition of Trans can be expressed with the following mathematical grammar:

Trans ={(¢.X) EQ x X| Ve > 03t €[0,¢) such that (§,x(1)) & Inv(§)}

The exact definition of 7Trans can be quite involved and it will be omitted here.
However, the above definitions suffice to express the determinism in hybrid
automata.

***Definition 2.11**[78] (Non-Blocking and Deterministic) A hybrid automaton H is
called non-blocking if for all initial states (g,x) € Init there exists an infinite execution

starting at (q,x). It is called deterministic if for all initial states (g,x) € Init there exists
at most one maximal execution starting at (q,X).

***Lemma 2.1**[78] A hybrid automaton, H, is non-blocking if for all
(q,x) € Reach N Trans, there exists ¢ €Q such that (q,q)€E0O and x€G(q.q). If H is
deterministic, then it is non-blocking if and only if this condition holds.

***Lemma 2.2**[78] A hybrid automaton, H, is deterministic if and only if for all
(q,x) E Reach

i) If x€G(q,q) for some (q,q)) €O, then (q,x) ETrans

ii) If .4)€0© and (§.") €O with § = i then ¥ £G(3.9) N G(4.4"); and

ii) If (¢.9)€EO x€G(q,q) then R(q.q.x)={x"}, ie. the set contains a single
element.

The following Theorem 2.3 is constructed from the above Lemmas that have their
complete proofs in [78-80].

***Theorem 2.3**[78] (Existence and Uniqueness) A hybrid automaton H accepts a
unique infinite execution for each initial state if it satisfies all the conditions of Lemmas
2.1and2.2.

Throughout the definitions of hybrid systems, including the hybrid time set, the
hybrid trajectory and executions, and later the theorem of Existence and
Uniqueness, we see numerous conventional restrictions that are difficult to comply
with in the realistic or physical cases. In the general theory of HSs there is a
formulation behind the non-determinism that can undertake the ambiguity in the
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modelling of realistic issues. The non-deterministic hybrid systems are in a turn just
opposite from the definition of the deterministic HSs. Equivalently, the verification
of the determinism can be considered as defining of the reachable sets. As this
programming issue cannot be solved in the real time, and for most of the cases, this
way is not found to be the most conventional. Therefore, a non-deterministic HS
allows the ambiguity to enter in a number of places: the choices of the continuous
evolutions, the choices of a discrete transition destination, and the choices of
relation in-between continuous evolution and the discrete transition. The
mentioned choices unconditionally provide the impact and disturbance that add the
ambiguity in the modelled and possible evolutions. In addition to the choices that
violate our sets of invariants, there are many cases in which the control technology
is used to steer the system evolution in the space of the infinite possibilities, still
impossible to grasp by the imperfect deterministic approaches.

This is acknowledged as one of the motivations that guided the subsequent thesis.

In the work of Branicky [66], we see that nondeterminism is connected to “jump”
systems, switched systems and variable structure systems. There is a ubiquitous
interest in modern science for this type of systems. Different approaches to the
problem lead us to think that there is still an open question; which of the approach is
the most appropriate? The emerging realm of the theory of chaos and the
nonlinearity exclusion is pointing out those anomalies, mostly arising from the
inaccurate modelling and hard assumptions. Equally important and added to the
earlier presented ambiguity in HSs modelling, the possible nonlinear phenomena in
HSs will be subsequently posed in brief.

2.2.2 Nonlinear phenomena in SAS

The drawbacks of different mathematical expressions referring to the impact to the
grade of accuracy of the natural physical systems, present a complex objective for an
applied mathematical science. Therefore, the continuous and discrete dynamical
systems, including the HS, consist of “strange” characteristics or rather “anomalies”
related to their dynamics. While the former are very well described by the modern
qualitative mathematical theory, the HS and their behaviour are significantly less so.
More commonly, we are dividing it in the smooth and the non-smooth systems. The
latter contains a piecewise smooth or the piecewise affine systems. Apart from the
aforementioned theory of hybrid systems, we see that, from the aspects of the
qualitative theory, those systems are called an event driven by a sense that
smoothness is lost at instantaneous event [1]. A good example of that event is an
applied switch. It is pointed out that even though the all-realistic systems are
smooth, at least from sizes bigger than molecular, this statement can mislead. On the
microscopic time scale, there is certainly a discontinuity in the instant of the impact.

The loss of smoothness is exactly the moment at which HS can develop the nonlinear
phenomena. Those “strange” dynamics are possible for the continuous and smooth
nonlinear dynamical system of the rank equal or higher than three. For the HS, and
because of discrete events, it is possible even for the lower rank systems. This
statement is analytically supported in the literature [1,82]. Subsequently, we
provide some basic definitions and terminology for a better understanding of the
main motives. As the main concern will be discontinuity, we must classify it for the
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piecewise-smooth systems, but now with the slightly generalized Definition 2.2, and
from a side of the mathematical qualitative theory.

***Definition 2.12**[1] A piecewise-smooth flow (2.32) is given by a finite set of
ordinary differential equations (ODEs), and piecewise-smooth map (2.33) by finite set
of smooth maps,

x =Fy(x,u), for x€Q, (2.32)
x = F(x,w), for xEQ, (2.33)

where U.,Q, =QCH" and each Q, has a non-empty interior. The intersection
2= QN ﬁj is either an [B""-dimensional manifold included in the boundaries AQ,
and AQ;, or is the empty set. In both cases, each vector field F; (2.32) or function f;

(2.33) is smooth for the state x and parameter u for any open subset U of Q. The
vector field F,(2.32), and differently than F; (2.33), define a smooth flow ¢.(x,t)which
is well defined on both boundaries AQ,and AQ;. On the other side, 7; is a map that

presents points of a smooth flow in the equidistant time intervals.

In Definition 2.12, we have intentionally confronted definitions of the pricewise-
smooth flow and map. The complexity in defining the intersection for the mapping
that is based on the sampling approach of the continuous and smooth system
consisted in the €. should be pointed out. The non-empty intersection
x,= ﬁiﬂﬁjwill be called also a discontinuity set, discontinuity boundary or
switching manifold. As stated, it is (n —1)-dimensional and smooth manifold. The
classification of smoothness is related to the interior point of the mentioned

switching manifold.

***Definition 2.13**[1] A degree of smoothness at point x, in a switching set Z; of a
piecewise-smooth ODE is the highest order r such the Taylor series expressions of
¢:(xo,1) and ¢ ;(xq,r)with respect to t, evaluated at t=0, agree up to terms of o' ™.
Hence the first non-zero partial derivative with respect to t of the difference
[¢:(xg.1) = @ (xg,0)],-0lS of orderrr.

As is known, the flow ¢,(x,r) is generated by F,(x,u), which means that
(P, (x,t
@) _p oo
ot
Thus, in other words, if F;(x,) = F;(x,)in a point x, €X;, then the smoothness is of
degree one. Also, the first higher degree is obtained if the Jacobian derivatives of
border functions differ d,(F;(x,)) = d,.(F;(xy)) in the same point. The latter condition

gives the smoothness of the switching manifold of degree two. Furthermore, in that
case, the system can be considered as a piecewise-smooth continuous system.

Our interest is devoted to the combination of flows (2.32) and maps (2.33) for the
smoothness degree of less than two in the switching manifold. Combinations of the
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flow and the maps lead to the hybrid dynamical system. Therefore, the formalism
based on the qualitative theory reveals the special dynamical characteristics that are
mostly theoretically omitted by restrictions and conventions explicitly presented in
Subsection (2.2.1).

We are defining a special case of the piecewise-smooth hybrid systems that is called
the impacting hybrid system.

***Definition 2.14**[1] For a piecewise-smooth hybrid system defined by the set of
ODEs

x =Fi(x,u), for x€Q, (2.34)
and the set of reset maps

x =R, (x,u), for x€X; = Q. ﬂﬁj , (2.35)

where the following holds:
) U,Q;, =QC " and each Q, has a non-empty interior
ii) VZis either [B"~'dimensional manifold included in the boundaries AQ, and
AQJ., or is the empty set
iii) VF, AVR; are smooth and well defined in open neighbourhoods around Q, and
Zij respectively,

we call the impacting hybrid system if R;:%,; —ZX and flow is constrained locally to
lie on one side of the boundary Q, =Q, U DI

Figure 2.2b presents the impacting hybrid system if we assume that F; = f, as a case
of SAS.

The qualitative theory is an emerging mathematical discipline that still does not
have a well-designed toolbox and framework. Some of the physical scenarios in the
higher order continuous systems and similarly for a much lower order
discontinuous dynamical systems have no qualitative explanation. That is why the
well-defined nonlinear dynamics for simpler physical systems give us just a rough
insight into the demanding events of the more complex nonlinear dynamical
systems. The following example, well examined in the literature [134,135], presents
the common dynamics that are applicable in the field of the impact hybrid system
with restricted complexity.

Let us consider such a restricted impact hybrid system, which has only one impact
surface X and one constrained region of dynamics Q":

x=F(x) for f(x)>0
x —=R(x) for f(x)=0 ) (2.36)
S={x:f(x)=0} Q" ={x:f(x)>0}
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Our reset map R(x) in Definition 2.14 and expression (2.36) is the impact rule.
Furthermore f(x) denotes an arbitrary continuous function. For a smooth and
well-defined vector field F(x), around the switching manifold X, at time ¢, the flow

d(t,) hits and intersects 2. The intersection points {x™,x"} €X are related to the

time events just an instant before and after an impact, respectively.

At this point we need a deep insight into the physical process to devise a reset map
(besides Definition 2.14 also defined in other HS formalisms, Section 2.1) or the
impact rule

x"=R(x") . (2.37)

To achieve the knowledge of the dynamics at the moment ¢,, we are interested in the
velocity and acceleration of our trajectory’s approach to the switching manifold.
That is directly related to the smooth function f(x) and yield:

(2.38)

(2.39)

Fig. 2.6 Impacting hybrid systems trajectory, events of multiple impacts for one
switching manifold

As in the example shown, both qualifying functions (velocity and acceleration) are
positive if flow is moving away from the switching manifold. Further discussion is
guided by a combination of different scenarios of qualifying functions. The scenarios
are further differentiated as the switching manifold is divided into subsections
around the intersection points (x~,x").

A flow approaching the intersection point x™ €3~ C = where X ={xEX:v(x) <0} is
defined by ®(x",), for t < #,. An impact happens at the time ¢, and triggers the reset
map (2.37).

The instant switching of the dynamics to the intersection point x* €X' CX is
considered in the conventional HS formalisms, Section 2.1. There
3" ={xEZ:v(x) >0} and consequently the flow is defined by ®(x*,r). Differently,
our concern is in the natural or physical systems, where the theoretical convention's
violation is very possible, as is the induction of scenarios in the switching section
30 = {(xEX:v(x) =0}.
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One of the scenarios is v(x7) =0, also called a grazing point where the impact low is
an identity map and differentiated by the relation to the acceleration. The effect of
sliding appears if the flow becomes stuck in the boundary

S0 ={xEZ: f(x) =0, v(x) =0, a(x) <0}. (2.40)
The set (2.40) is also known as a sticking subset. Different physical systems develop
all varieties of different scenarios and have to be devised in the relation to the
sticking regions. The sticking vector fields and reset mapping enrich their
mathematical models, and overcome the possibility of the hard omissions by simple
assumptions. The Zeno phenomenon, impossible in the instant transitions and strict
conventions, but present in the physical environment, gets its natural sibling known
as the chattering sequence. Analytically examined, the impacting hybrid systems are
entering the sticking regions by the chattering sequence. It is shown in Figure 2.7
[1] that the impacting hybrid system’s flow impacts the switching manifold section
27, resets, and enters the chattering sequence of the infinity impacts at the finite
time. Afterwards, it sticks to the section =°, influenced by the infinitesimally small
velocity and the negative acceleration. Consequently, it exits the switching manifold
influenced by v(x),a(x) > 0.

sticking region

\

Fig. 2.7 Typical scenario of the impacting hybrid system at the time of impact [1]

RO

Following Definitions 2.13 and 2.14 of the smoothness for the impacting hybrid
systems, we can conclude that the main difference versus the general HS is in the
type of jumps. While the general HS considers the state jumps, the impacting HS
consists of the flow jumps. Therefore, the general HS has a zero degree of
smoothness in a discontinuity boundary. In this statement, we can recognize the
important knowledge that has to be considered in order to avoid misleading tracks
in the modelling of the natural systems. Thus, the physical insights into the natural
system should not be unknown or easily neglected, even for trivial cases.

The aforementioned scenarios of the impacting systems are given by observing from
a side of the flow switching dynamics and disturbing the continuity. A discontinuity
in general brings other qualitative changes that appear to be harmful nonlinear
phenomena from the side of the control system technology. With no loss of
generality, we will present some terminology and definitions related to the
continuous nonlinear systems.

If we consider that
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x=F(x,u), for xEXCH", uch" (2.41)

is a continuous dynamical system, where X denotes the state space and u a system
parameters, then the set of points x(7), as a solution of (2.41) for all t€T, and
initial condition x,, is called a trajectory or orbit. A picture showing the qualitatively
different trajectories of the state space X, is called the phase portrait. The latter is
drawn concerning the system’s fixed points or equilibrium xi* where F(x,.*,,u) =0
forall rE€T.

***Definition 2.15**[1] (Invariant set ) A set A C X that holds x(t) €A, for an initial
condition x, €A, and all t €T of a dynamical system (2.41), is called an invariant set.

***Definition 2.16**[1] (Attractor) If the invariant set A C X is closed (contains its
own boundary), itis called an attractor if
i) for any sufficiently small neighbourhood UCX of A , there exists a
neighbourhood V of A, such that x(¢t)€U forall x,€Vand 0 <t€T, and
ii) forall x,€U, x(t) >A ast—>x.

For an attractor in Definition 2.16 of the dynamical system, it is of qualitative
importance to define the domain of the initial condition that they attract.

***Definition 2.17**[1] (Basin of attraction) A basin of attraction of an attractor A
is the maximal set U or domain for which x, €U implies x(t) = A as t —».

> O &

a) equilibrium b) limit cycle c) invariant torus

S

d) homoclinic orbit e) heteroclinic orbit f) chaotic attractor

Fig. 2.8 The phase portraits of different invariant sets [1]

These qualitative characteristics of the dynamical system must be taken into
consideration before selecting the proper modelling for the final usage in the
simulation and control of dynamical systems. In particular, a more complex
definition of these terms is met in the examples of HS. In simpler systems, the
equilibrium is just a point instead of the invariant set, but complex systems develop
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different invariant sets. As typical for the control system technology the equilibrium
or the invariant set is the main goal. Our control solutions will be emphasized with
an ability to lead, in a controllable way, the flow of a dynamical system towards the
willing equilibrium while simultaneously avoiding an unwilling attractor.

One of the examples of a more complex invariant set is a limit cycle. The periodic
orbit, which is isolated and determined by an initial condition x,, and a period 7,
that a flow ®(x,,T) = x,,, for a minimal 7 >0, is called a limit cycle. That means that
in the neighbourhood of a closed periodic curve in the phase space, no other such
curve exists. While the limit cycle is inherently a nonlinear phenomenon, in the
linear systems we also find periodic orbits [81], but those are not isolated.
Topologically, the limit cycle is circular. Their topological shape differentiates other
complex invariant sets. Figure 2.8 presents some of the examples of the complex
invariant sets.

Besides the continuous systems’ interpretation of the natural processes, in broad
examples of different scientific realms, a discrete mapping has an inclined
dominance. In HS, we see that the presence of both is unavoidable. Similarly, as for
the continuous nonlinear dynamical systems, so too the mappings develop different
nonlinear phenomena. The key difference among them is a system order, which is a
sufficient to guarantee such a scenario.

For a dynamical system expressed by map
x> F(x,u), for x€EQCH", uchi™, (2.42)

a time is discrete function ¢ =kT, where k€/, and TE/J denotes the constant
period. An evolution of map _# through the time 7, means its k™iteration and can
be expressed by

x(t) = F(x(t,_)w) (2.43)

or as the k — fold composition

x(t)=Fiyo Fipoo Folxg,u) k>0 . (2.44)

A dynamical system is smooth if a map (2.42) has its invertible map #*", so that

x(ty) = F(x(ty).u) and x(zy) = FV(x(1)).00).

Analogically as for the continuous system, the fixed point of the map is defined by the
expression x = _F(x",u). Furthermore, the periodic orbits are posed by periodic
points where x* = j‘;(x*,,u), referring to the periodic appearance with the frequency
of 1/t,. Then it defines the period - k orbit. The cobweb diagram replaces the phase
portrait and it is defined by ordinates x(z,) and x(z,_,). Also, it is drawn related to
the fixed points contained in the line x(z,) = x(¢,_,).

Both continuous or discrete dynamical systems’ nonlinear phenomena are directly
related to the loss of the system’s stability. There is a reach stability theory of the
nonlinear dynamical systems, but rather just for continuous ones. The stability
discussions are less dominant for discontinuous systems or piecewise smooth.
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Apart from the established Lyapunov stability theory or asymptotic and global
stability, for discontinuous systems, the general academia is still in the process of
formalizing an equally powerful toolbox.

The qualitative theory of systems’ dynamics aims for an equivalence of the analysed
system, in order to preserve the qualitative characteristics of the origin, if the latter
is too complex to tackle. This way, we discuss the system'’s structural stability, again
referring to the system’s equivalence. The minimal preconditions for their
equivalence are the same dimensions of the phase space. Additionally, it has to have
the same number and the type of invariant sets of their phase portraits that are in
the same general position in respect to each other. Mathematically, two-phase
portraits are the same if there is a smooth transformation that rotates, stretches,
squashes, but does not fold one phase portrait into the other. A transformation that
holds an expressed statement is called homeomorphism. It is a continuous function
of its continuous inverse defined over the entire phase space. Further on an
achievement of this transformation is possible over the system’s topology in
differential geometry.

***Definition 2.18**[1] Let us take two dynamical systems defined by triples {X,T ,x(¢)}
and {XT,z()} for x,zE€ X, they are topologically equivalent if a homeomorphism h
that maps the trajectory of the first system onto the trajectory of the second one,
preserving the direction of time, exists.

In a case of two maps (2.42) _# and G, we say that they are topologically conjugate
if there is some homeomorphism # that satisfy

Fx) = (GHhx) — h(F(x)=GHW) , (2.45)
or shortly

f:h_l oGoh . (246)

Similarly, for two flows, ®(x,r) and W(h(x),r) holds that they are topologically
conjugate if there is some homeomorphism /4 that satisfy

D(x,1) = K (W(h(x),1)). (2.47)

[t is practically complex to provide such a proof in most of the cases, and there is a
relaxing method known as smooth topological conjugate. Thus, between two flows
we look for a differentiable homomorphism & with its inverse or diffeomorphism that
holds in general

dh(x)
dx

-1
f(x) = ( ) S (h(x)). (2.48)

Understanding topological equivalence brings us closer to the definition of
structural stability and opens the possibility of defining more complex nonlinear
phenomena.
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***Definition 2.19**[1] (Structurally stable) A flow or map is structurally stable if
there is an € >0 such that all first-order perturbations of maximum size ¢ to the
vector field or map f lead to a topological equivalent phase portrait.

From Definition 2.19 and referring to the Taylor series, we see that the structural
stability of a dynamical system in the neighbourhood of an invariant set is proven
throughout the topological equivalence to the linearization of the system. Varying of
the system parameters is the most crucial scenario that brings our dynamical system
to the structural instability. Dynamical systems (2.41) or (2.42) can show that effect
only for a specific combination of the vector u components.

***Definition 2.20**[1] (Bifurcation) An occurrence at the point u, where a
dynamical system defined by triple {X,T,x(t)}, loses its structural stability by varying
parameter u, is called bifurcation.

A bifurcation is an already complex nonlinear scenario that can manifest in
numerous different forms. In literature [81,82], we can find their definitions and
typical forms that are regularly presented by the bifurcation diagrams. These
diagrams show a plot of the invariant set related to the bifurcation parameter u.
Their rough grouping brings a local or global group of bifurcations. Local
bifurcations are directly related to the loss of hyperbolicity (system’s eigenvalues
not on the imaginary axis) of the invariant set. All the rest of the bifurcations are in
the group of global ones. The presence of bifurcations in the control theory can be
considered as a first step to the nonlinear uncertainty that can lead a dynamical
system to more complex nonlinear scenarios and chaos.

Referring to Definitions 2.16 and 2.17, if we vary the dynamical system'’s parameters
u (2.41), the system can enter the neighbourhood of the strange attractors.

***Definition 2.21**[1] A closed and bonded invariant set A is called chaotic if it
satisfies the two additional conditions:
i) It has a sensitive dependence on the initial conditions:

3e>0: V(x ,EA A UCA) = Ax,, €Ut >0): 1 x(1)|, - x(1)
ii) There exists a dense trajectory that eventually visits arbitrarily close to
every point of the attractor:
I, €EQ:V(x,, EQAe>0) = 1x(1), -x,,l<e, tEH, QCA.

Xml >¢€

It is stated that smoothness is not a sufficient precondition in an exclusion of the
nonlinear phenomena. As expected, the nonlinear anomalies exist in our state space
for smooth dynamical systems defined by ODEs and maps. However, the proven
scenarios in several dynamical systems, thanks to the qualitative theory, are related
to the complexity as the order of the dynamical system itself. We know [81] that
nonlinear and smooth dynamical systems’ state space might exhibit the chaotic
invariant set, if having a system’s order equal or higher than three. While that
constraint seems positive for the continuous flows, for the maps, we can experience
the strange attractor (chaotic) from the first order. Thus, the systems with the
exchange of flows and maps are hypothetically more prone to these kinds of
anomalies.
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Now, recalling the HS, specifically the piecewise smooth dynamical system from
Definition 2.14, we see that qualitative theory has to consider all regions or
boundaries of the system Q,, as the arbitrary amount of the switching manifolds X,
in order to exemplify all possible scenarios. It is almost impossible to fulfil that task
for the higher order systems, but the analysis of the first and second order systems
give us the rough perception of at least some scenarios. New momentum in the
analysis is certainly a discontinuity boundary and the qualitative changes of

topology of the invariant sets in that respect.

**Definition 2.22**[1] (Piecewise-topological equivalent) We say that two
piecewise-smooth dynamical systems (2.34), (2.35) are called piecewise-topological
equivalent if:
i) thereis homeomorphism h that maps the orbits of the first system onto the
orbits of the second one, preserving the direction of time and
D(x,1) = b~ (W(h(x),1)).
ii) The homeomorphism h can be chosen so as to preserve each of the
discontinuity boundaries. Such that, for each i and j holds h(Z;) = i‘.ij.

Analogically as for the smooth dynamical systems, an appearance of the nonlinear
phenomena is related to the structural stability, but now related to the piecewise-
topological equivalence.

***Definition 2.23 **[1] (Piecewise-structurally stable) A piecewise-smooth system
is piecewise-structurally stable if there is an € >0 such that first-order perturbation
of the maximum size ¢ of the vector field or map _F, that leave the number and degree
of smoothness properties of each of the boundaries X, unchanged, lead to the

piecewise-topological equivalent phase portraits.

Consequently, from Definition 2.23 it is revealed that preserving of the smoothness
over the switching manifolds, while the topological equivalence is guaranteed, also
preserves the structural stability. Thus, in the case that any of those preconditions is
violated, this scenario will certainly lead to the nonlinear phenomena as such.

***Definition 2.24**[1] If for any arbitrarily chosen parameter w, of the system (2.34),

(2.35) occurs so that system is not the piecewise-structurally stable, this occurrence is
called a discontinuity-induced bifurcation.

In references [1, 81, 82], we can find a thoughtful analysis of the most commonly
occurring bifurcations. As this matter is considered in the core motivation of this
thesis, but not the main objective, we will mention it with the short description,
including the main methodology that defines it.
The most distinctive discontinuity-induced bifurcations are:
- Border collision bifurcations.
It is assigned to bifurcations that appear when the piecewise-smooth map, has
a fixed point exactly laying on the switching manifold .
- Boundary equilibrium bifurcations.
Those bifurcations are generated by flows when the equilibrium lies exactly on
the switching manifold.
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- Grazing bifurcations of limit cycles.
Those bifurcations appear as the consequence of the grazing effect of limit
cycles and switching manifold.

- Sliding and sticking bifurcations.
Similarly to the grazing ones, these bifurcations we relate to the effect of the
sticking and sliding of limit cycles with respect to the switching manifold.

- Boundary intersection crossing collision.
It is related to appearance when there are two different switching manifolds ;

and x ;intersecting, and the limit cycle passes that intersection.

The powerful method in the analysis of the above-mentioned systems’ ill conditions
is discontinuity mapping. Although, the maps are already qualified as formalism
burdened by the complex nonlinearities, it is in a same time effective tool. The
perfect example is a Poincar map and the idea of the stroboscopic mapping. In the
examples in which we operate with the closed orbits, even on the occasions when an
orbit is a solution of the complex nonlinear and multidimensional flow, we can form
the plane or the surface in the way that it is transverse to that flow. All trajectories
are intersecting the plane.

If we assigned that plane as II then the Poincar map is mapping P : 11 —II.

***Definition 2.25**[1] (Poincaré map) Let I1 be a surface transverse to the flow
®(x,T) through it and not parallel to it, then the Poincaré map P is a mapping from
I1 to itself.

Fig. 2.9 The graphical presentation of the basic idea of Poincar mapping [1]

From Figure 2.9 it is explicitly shown that the surface II consists of all intersecting
points of the cyclic flow ®(x,T)in the period T. If we consider that x,,x,,, €II are
points of trajectory x(¢) in time k7" and (k +1)T respectively, then the Poincar map

is
X =P(xp) (2.49)
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For points x,,, =x, or P(x;)=x,, we have defined the closed orbit of the flow
O(x,T).

This methodology is crucial in the qualitative theory of a dynamical system in
general and certainly in HS and impact hybrid systems. In Figure 2.10 we can see
some typical problems in the analysis of the piecewise-smooth systems or switching
affine systems.

D &

b) Example of the grazing effect of limit
a) Analysis of orbits in a smooth region cycle to switching manifold

lxo

d) Piecewise-smooth system with orbit
that intersects the switching manifold,
but continues in other region

c) Example of the impact hybrid system
and their orbit

Fig. 2.10 Examples of periodic orbits and analysis with the Poincar mapping [1]

The comprehensive analysis of the invariant sets, the boundary regions around the
switching manifold, and invariant set laying on the switching manifold itself is based
on discontinuity mappings. That methodology, introduced by Nordmak [83],
synthesizes the Poincar mapping just on the point at which a trajectory intersects
with the discontinuity boundary. Afterwards, this map can be composed with a
global Poincar map on the both sides of that boundary. We can find in the literature
[1] different concepts of discontinuity maps gathered according to specific case
studies. Accordingly, those maps are given terminology, i.e.
- The transverse discontinuity mappings in cases in which we have
composition of two different flows on both sides of the discontinuity
boundary.
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- The Poincar -section discontinuity mapping that is defined close to the
grazing point; it contains the grazing set and transversally intersects the
discontinuity boundary.

- The zero-time discontinuity mapping is defined around the grazing point, as
the composition with the maps reconstructs the smooth region orbit
completely (zero-time is a convention in which the grazing point has no
elapsed time).

2.3 An example of SAS, a DC-DC Boost Converter

Solely by studying the HS, and in order to pursue an example of SAS, the Pulsed
Energy Converters (PEC) are emerging as a comprehensive choice. The control of
PEC provides a substantial complexity that additionally contributes to the rightness
of our choice. A broad presence of PEC in modern technology occupies an interest of
different scientific realms. This thesis will illuminate PEC from the side of the
heuristic control methodology. Certainly, the core contribution will be in the
modelling of PEC despite the fact that all aforementioned formalisms have already
exemplified it. We present the survey throughout the history of the modelling of
PEC, but bearing in mind the mathematical and physical bases, and from that aspect
highlighting just the most distinctive ones.
Almost all electronic equipment contains a power supply and then includes a PEC.
Those have been dominated in the past since the first developed semiconductors.
Their main role is interfacing energy sources with the consumers by controlling the
power flow. While at the end of the 1980s and beginning of 1990s, most of the
modelling was motivated by the engineering of electronic circuits, today’s modelling
is rather inspired by the increasing of the efficiency, reliability, robustness, and the
minimization of the physical extents and electromagnetic interferences (EMI). The
latter we connect with the coarser controls influenced either by the simplified
solution or inability to pursue the advanced control algorithms. In our agenda of
objectives, the control algorithm has to include EMI.
Therefore, if we divide the modelling of PEC in the levels of different interest,
regarding the grade of accuracy, then we can pose three of them.

First, there is a level of modelling rendered by focusing the components’
physics [84-88].

The second, dedicated more to the level of converter, it focuses the main
converters’ applications. That is certainly an energy transfer based on the
predefined input and output parameters [3,93,94]. The converter level will also be
the main interest of this thesis and accordingly referenced in the subsequent
sections.

Third is a system level that puts into the focus a final objective of the system in

general [89-92].
The boosting of technology in the last decade, especially the level of integration of
semiconductors and their ideal forms, is diminishing the importance of components’
level modelling. Moreover, the system level, mostly developed as a composition of
models, requires the highest level of accuracy of the converters’ model. Thus, the
second or converters’ level of modelling is also the most crucial one in the
development of different systems.
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To decompose the complexity of the broad PEC modelling field, in the following we
concentrate on a DC-DC energy conversion. The fundamental members of DC-DC
converters are the buck, the boost and the buck-boost DC-DC converter. Their
simplified equivalence in the AC energy transfer is the transformer. Analogically, in
the case of the step-down transformer, we speak about the buck DC-DC converter,
and in the case of the step-up transformer it is a DC-DC boost converter. The DC-DC
conversion that combines those two analogies in the AC energy transfer we call the
buck-boost DC-DC conversion. Combinations of the inductance, the capacity and two
semiconductors (transistor and diode) form the electronic circuits capable of
transferring a DC voltage input to a DC voltage output of a different level. As shown
in Figure 2.11, the two-port system differentiated in the block of semiconductors
and low pass filter, represents a DC-DC converters physical topology.

SEMICONDUCTORS LOW PASS FILTER

v i
out * out

Vi i
4»’7
T

Fig. 2.11 Two-port physical topology of a DC conversion

To transfer a DC energy from the input source to the output consumer and at the
same time to maintain the predefined output voltage v, the transistor has to be
driven by the pulse width modulation (PWM), concerning the switching period Tj.

In Figure 2.12 there are three different examples of the electronic circuits showing
the basic principles of DC-DC conversions.
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a) DC-DC buck converter circuit diagram
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b) DC-DC boost converter circuit diagram
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c) DC-DC buck-boost converter circuit diagram

Fig. 2.12 The basic principles of a DC-DC conversion

The PWM driving pulse will have its width in the range [0,7.], and be applied in the
sequential manner. That will cause the sequential switching of the transistor and, in
combination with a natural diode’s switching, it forms a different circuit topology in
one switching period. For each circuit topology, one can establish a system of
ordinary differential equations (ODE), mostly as a second order system of variables
i, and v_. Even certain circuit topology, neglecting the nonlinearities, can be
expressed simply as a linear system; DC-DC converters are SAS systems that imply
the existence of nonlinearities. The main sources of the nonlinearities are the
intrinsic properties of semiconductor devices, the inductor nonlinearity and
nonlinearity associated with the control circuit. Aforementioned in Subsection 2.2.2,
the SAS ability to induce the nonlinear phenomena is automatically applied to DC-DC
converters. Mathematical modelling of DC-DC converters, already considered at the
level of the converter is closely defining the control solution. Our interest in the
thesis will not be a selection of a well-known and widely used average switched
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methodology, followed by the exemplification of the powerful control algorithms.
Conversely, it will consist of the optimal modelling driven by the final task relying on
the realistic implementation, yet bearing in mind the complexity of the basic
components’ level modelling. Supporting the same principles, in the selection of a
proper SAS example, the DC-DC boost or buck-boost converter bring even more
troublesome expressions in comparison with a DC-DC buck converter. Those have
an additional real zero on the right half plane, which normally has significant
influence on their dynamic behaviours and stability. Differently, the buck DC-DC
converter has just a pair of poles. This observation is gathered by conventional and
linear analysis based on the average switched modelling method [95]. In the
subsequent studies, we have selected the DC-DC Boost converter as an example of a
Hybrid Dynamical System grouped in SAS. To present the principles of modelling of
a DC-DC boost converter, and explain the main contribution of this thesis different
modelling, we are posing the short survey of a DC-DC boost converter modelling.

2.3.1 Small-signal model and Large-signal model of a DC-DC boost
converter

Already at the end of 1980s, in the work of Middlebrook and Cuk [23,24], we can find
the valuable modelling contribution at the level of the converter modelling. The main and
appealing task at that time was to transfer the physical knowledge, from the component
level modelling, to the strong basis for the further control of the output voltage. A two-
port system from the Figure 2.11 is extended to the three-port system, including the PWM
(Figure 2.12) as the main control signal in achieving the main objective. In their
exploration, as the main objective was modelling by the equivalent circuits, we find the
physical insights into the qualitative behaviour that is an essential prerequisite to proper
use of the more abstract, analytic and computational methods. With posing of the
equivalent circuits or canonical models [23], they have delineated two main qualitative
aspects in the modelling of DC-DC converters.

First, we have to distinguish the signal processing from the power processing. The
term “power processing” considers the electrical energy conversion from one voltage,
current and frequency to another, and preferably achieving 100% efficiency. While the
signal processing is concerned with performing operations upon the input information, in
the contrast, the power processing concern is with performing operations upon the power
input, according to the functions specified by the information input. Thus, the
interchanged power and information inputs in the power processing, is a characteristic of
DC-DC converters. A development of integrated circuits and information technology has
a tendency in concealing the main property of conversion and unintentionally suggests
the misleading modelling guidance.

Second, the canonical circuit equivalents are constructed to find a linear equivalent
that represents the properties of terminal small-signal AC variations, in which the
nonlinearities are relegated to the variation of the element values with the large-signal DC
operating point. DC-DC converters convert the electrical signals that are constructed as a
sum of their DC and AC components, where the AC component is considered as the
ripple over the main DC value. The varying of converters' parameters necessarily leads to
the changing of the operating point and indicates the nonlinear characteristic of DC-DC
converters. A transistor is a nonlinear device, and the model of the transistor for an active
region is a function of the operating point. Furthermore, with the canonical circuit
representation, in which the ideal transformer is the central element of the voltage
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conversion, we see that its conversion ratio as a function of the duty cycle is also a
function of other circuit parameters, i.e. a switching frequency, an inductivity and the
load resistance.

The idea of canonical equivalents of the electric circuits theory, involving the analogue
elements presented in the work of Middlebrook and Cuk also shows us that DC-DC
converters, in their modelling, should be considered integrating the measured feedback.
Their canonical models allude to a closed loop regulation principle. At the same time, it
considers the linear control theory. That is the reason that some of the model names
indicate the type of closed loop solution. Basically, at that time, we can distinguish so
called “voltage* and “current programmed* models and the mode of operation. Their
critical observations of the term “current control mode* is supported in this thesis too.
From the control strategy, the current control mode is the name given to the solution that
has a main voltage control loop, but supported with an integrated current control loop.
Therefore, in principle it is just a cascade control solution pointing out the importance and
the impact of the inductance current to the stability of the power conversion.

In conclusion, the description of converter small-signal models by means of canonical
equivalent circuits is a circuit-oriented approach. It is aimed at equivalent-circuit results
having elements that retain direct physical interpretation. As the consequence of the
formally upgraded equivalent circuit idea [96], and the generalization of the analysing
method by which the DC and small-signal transfer function can be obtained directly
without the use of an equivalent circuit, that research is brought to the state-space
averaging. The approach is constructing the averaged switched model of a DC-DC
converter.

Based on the abovementioned theories, we can group a DC-DC converter model in the
models of small signal values. In those, the nonlinearity is neglected in the switching
transitions and the semiconductors are assumed as ideal switches. Or, it is grouped in the
large signal models in which the switching transistor is modelled as the controlled current
source and a diode as the controlled voltage source [58].

An averaged switch model is a small signal model, sourced from the linear state space
representation

% = Ax(t) +Bu(t)

) (2.50)
y = Cx(t) +Du(t)

of every particular mode of a DC-DC converter’s operation. The modes of converter’s
operations are a different circuit topology induced by one control cycle of the converter.
During one control cycle, the electronic circuit changes the topology because of the
conduction statuses of the semiconductors. Referring the current trajectory during the
control cycle and the energy transfer, we differentiate the continuous conduction mode
(CCM) and the discontinuous conduction mode (DCM). In CCM, the electronic circuit is
driven to maintain the continuous current flow through the coil, and opposite for DCM.
Those modes should not be mistaken with the modes of a DC-DC converter’s operation,
considering its hybrid nature. As per that fact, the number of the circuit operation modes
is different for CCM and DCM. Thus, CCM contains two circuit modes of operation and
DCM three. Table 2.2 presents typical circuit modes of operation for a DC-DC boost
converter in DCM.
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Mode | Transistor Diode Interval
1 conducting no conducting |
2 no conducting | conducting e
3 no conducting | no conducting | #;

Table 2.2 Modes of operation for DCM Boost DC-DC converter

ODE:s (2.50) in the state space, for a DC-DC boost converter shown in Figure 2.12b, are
based on Kirchhoff's laws for an electronic circuit topology change throughout the modes
of operation, Table 2.2. The equations in CCM are the following:

Mode 1:

, -1

V,=——"—""V

¢ CR+r1) €

|

i =—E 2.51

L= (2.51)

vV, =V

Mode 2:

. -1 N R )

V. = Vv l

¢ CR+r) ¢ CR+r1)"

. -R R 1

P = p——te i w—E . (2.52)
L(R+T)) LR+r)" L

VUzVC

The characteristic matrices of a state space representation (2.50), in which we assumed
the constant circuit elements and the piecewise linearity of the system for particular
periods ¢,, and 1,, are:

1 -1 0 0
A=——o ,B =B, =|!
C(R+r)|0 O .
1 [—1 R
A= ————|-CR CRg (2.53)
C(R+r,) | |

To develop the averaged model, we have to implement a function d(¢) =k - d,(¢)€[0,1],
which denotes the duty cycle over the transistor (d, (¢)is a scaled value to adopt the
physical construction). The function is a relative time of the control period 7; equal
to the time period ¢,,. It also presents our control signal. The averaging in the state
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space is done for a complete period 7Ty =1t, +1,,, and thus assuming that the third
mode does not exist 7,, =0, or is negligible

x(2) = [dA + (1 - d)A))x(1) + [dB, + (1 - d)B,)]u(7)

) (2.54)
y(0) =[dC, + A = d)CH]x(1) +[dD; + (1 - d)D,)]u(1)

The equations (2.54) evolve into the equivalent circuit state space model of a DC-DC
boost converter for CCM. Now, the new equivalent state space averaged model

x(t) = Ax(2) + Bu(?)

_ — ) (2.55)
y(t) =Cx(t)+ Du(t)
is expressed by the following matrices:
L
i (I-d) |a-a)
C(R+r)| -CR  —CRr,
3 .| (2.56)
9 _q
B-l o
- 0
L

Without neglecting the elements’ physical characteristics and the converter’s hybrid
nature, the problem is purely nonlinear. For the sake of complexity reduction, and based
on the assumption that the modelling will only be done near the operating point, these
system characteristics are neglected. We can now consider the equivalent and continuous
system, but still nonlinear. The state space variables are naturally the AC signals, having
its AC ripple added to a DC signal part. Thus, one could derive the linearization around
the equilibrium point. That operation upon the average model is the well-known
perturbation theory, considering an infinitesimal change of the state and control variables.
The new substitute variables are

x(t) = X + Ax(¢)
y(@) =Y +Ay(1) > (2.57)
u(t) =U + Au(t)

where A denotes a small-signal value or a ripple.

In the linearization process, we also add the small signal value over the steady duty cycle
d(t) =D+ Ad(t). Thus, the state space equations (2.55), (2.56) will evolve in the
small signal state space equations:

Ai(1) = AAx(t) + BAu(t) + B,Ad(1)

-~ _ e (2.58)
Ay(t) = CAx(t) + DAu(t) + D,Ad(?)

The equations (2.58) are rendered by putting the substitution variables (2.57) into the
(2.55), and neglecting the products of the AC quantities Ad(#)Av.and Ad(t)Ai,. Also,
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the quantities related to the products of DC values are considered to be initial
conditions of the operating point and accordingly subtracted.
However, to calculate the steady state DC values, we use equations x(¢) =0 or

0=AX +BU
Y =CX+DU
X =-A"BU. (2.59)

The capital letters are DC values of the operating point.

For our example of a DC-DC boost converter, the state space model in a certain operating
point will be the following:

1 -I,R
o (0=-D) 1q-D) C(R+1.)
Ax(t) = —C(R+ | -CR* —Crr, Ax(t) + %AE(t) + (V. +1,i)R Ad(t) . (2.60)

L L L(R+r1.)

Now, we could also proceed to form the transfer functions in the s-space for an averaged
model,

v,(s)
=077 2.61
G,(s) 4(s) ( )
v,(s)
G = o7 2.62
,(8) E(s) 5 ( )

by taking in considerations that it is for a linear and non-homogenous invariant system
G(s)=ClsI- A" B. (2.63)

The same approach can be applied to the other two types of DC-DC converters.
An example of typical transfer function computing results for a DC-DC boost averaged
model is given by [59](see details in [59]):

K,(1-T,s)

G,(s)= 2.64
1) T?s* +2T cs+1 264
K
G,(s)= 2 2.65
() T?s* +2T cs+1 (2.65)

Coefficients in the transfer functions are calculated for a particular set of elements that
are chosen, regarding their estimated series resistance (ESR). Therefore, the number of
elements in the circuit diagram can vary. For example, the circuit diagrams in Figure
2.12a, b, and c are just some of the possible constructions related to the involvement of
the ESRs.

Most of the engineering solutions in the field are based on the above formalism even
though it is gathered on a strict and hard restriction around the operating point as shown
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by (2.58) and (2.59). Nevertheless, the use of this formalism relies on the same idea as the
equivalent canonical circuit expressed in [23]. In seeking a compact solution, to construct
the equivalent state space model, but by a coarse approximation, it is certainly modelling
the converter for a complete switching period.

Following the experience in the exploitation of DC-DC converters, scientifically in
analysis of the stability in control of DC-DC converters, there was a continuation of the
work of Erikson, Cuk, and Middlebrook [24] in the direction of large-signal models. A
model that can sustain large parameter perturbations and remain stable is devised. In
those perturbations, the nonlinear terms become significant and, on some occasions, harm
the system stability. DC-DC converters are open loop stable and closing the feedback
loop causes an appealing stability problem. The large-signal models are nonlinear, but
again rather based on the similar assumptions, and the linearity of the duty cycle function
related to the state variables [24], called a “linear ripple approximation”. Other
approaches are strictly connected to the linear feedback control solution by the so-called
“current programmed mode” [97] and again involving the averaging approach. At the
later stages, the large signal models are improving the earlier assumptions made in the
“current programmed mode” and tackling the nonlinearity by dividing the state space
expression into slow and fast variation components [97]. Those solutions are again firmly
connected to the linear control theory and limited to the simulation abilities at that time.
Thus, most of those large-signal models are just used in the simulation to underline the
instability regions and established the stable linear control parameters.

2.3.2 Hybrid automaton of a DC-DC boost converter

More powerful computing abilities, as a base for the construction of more accurate
modelling principles, referring to the development of a digital technology, contribute
to the definition of hybrid dynamical model formalisms in all their varieties.
Although, the HS modelling existed in the 1990s, it was barely used in the theory of
electrical circuits. Thus, the modelling of DC-DC converters, observed from the
theory of HS, comes later at the end of 1990s and the beginning of this century. We
can connect it with the significant contribution of Bemporad and Morari [26]. In
Section 2.1 we have introduced HS formalisms that are applicable for a SAS where
the DC-DC converters certainly belongs. Today, the grade of applicability of those
particular formalisms in the control technology remain unknown. The theory of
Hybrid Automata as the fundamental form of HS defined by Definition 2.1 gives us
the global framework.

A DC-DC converter is a process in which the continuous and discrete states shown in
Figure 2.1 are tangled together into the dynamical system. The hybrid automaton of
a DC-DC boost converter taken in our thesis as a core example is posed in Figure
2.13.
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x'(t)=A x(t)*+B u(t) t=(k+d(t))T.

d(t)€ [0,1]

X'(ty=A x(t)*+B. u(t)

t>(k+d(t)T, Autonomous
switching

by diode

X'(t)=A x(t)+B.u(t)

Fig. 2.13 Hybrid automaton of a DC-DC boost converter

As shown, our process contains three different discrete states; g, ¢, and ¢,. For
each discrete state, which corresponds to the mode of operation, its electrical circuit
topology has an associated state space model. If we recall the equations (2.53) for
CCM of a DC-DC boost converter and add the third mode state space equations for a
state space vector x(1) =[v.(?),i, ()]

Aj=——— , B,=| |, (2.66)
STCR+r)|0 of TP o

we receive the model in DCM and gather the complete definition of continuous
states of the hybrid automaton from Figure 2.13.

Further development of hybrid automaton has to continue in the direction of
tackling the problem of guard and reset map. The state space equations of (2.53)
and (2.66) are rendered by taking into the consideration that input into the
electrical circuit is the source voltage E. If we exclude one of the modes of operation
and observe it separately, it is physically meaningless. The electrical circuit will run
into the saturation and physical constraints of the employed elements. Our process
has a meaning if it works in CCM or DCM that includes a set of modes {g,,q,} or
{4,-4,,9;}- The guard G(t,d(t)) and reset &(t,d(t)) maps from Definition 2.1 are
functions of the time and the duty cycle d(r). Referring to that fact, the hybrid
automata bring substantial complexity in order to elevate the accuracy of modelling.
This drawback is limiting model applicability in employing the established control
methodologies.

In the latest work of Tabuada [63], we can find the theoretical bases of forming an
approximate bisimilar symbolic model of a DC-DC boost converter and its analysis.
Even as theoretically advanced approach, it is based on the hard restriction on
taking the DC-DC converter as an example of SAS. It takes an abstract switch into the
consideration, which must replace the diode and transistor at the same time (Figure
2.12b) and provide the logical tautology (see Definition 3.1, Chapter III) in the
switching of two different electrical circuits. The basic theory of HS and Hybrid
Automata is certainly a profound way to form a simulation model of a DC-DC
converter and, together with the computing abilities of today’s technology,
formulate the accurate counterpart to the physical process. Our interest in this
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thesis is a definition of the modelling that allows the applicable model-based control
solution that is the genuine part of the converter itself. One of the modelling
formalisms, following that direction, can be found in MLD modelling explained in
Section 2.1.4.

2.3.3 MLD model of a DC-DC boost converter

In the last decade, Model Predictive Control (MPC) has taken a lead in the control
techniques, mostly by the development of more powerful computing abilities.
Observed from that aspect, it is expected that also a development of control in the
power electronics will follow the same trend. Thus, the DC-DC converter modelling
influenced by the control solution requires for a more compact and global solution,
referring to the robustness. The latter excludes an observation around the operating
point and promoting the global modelling. That makes the problem more compelling
for a DC-DC boost converter and considering the modelling that includes both, the
CCM and DCM of the converter. Added to the mentioned trend, development of the
discrete controllers completely displaced the analog ones and established the
solution mostly in the discrete time state space.

The MLD modelling presented in the Subsections 2.1.3 and 2.1.4, in DC-DC
converters emerges in the work of Geyer [98-100]. This work addresses the main
dogmas in the new era of the control of DC-DC converters. First, it is still unrealistic
in industrial practice [100] to implement variable switching frequency. Second, as
mentioned above the basic theory of Hybrid Automata [100] still does not suggest a
physically applicable solution by satisfying the safety properties and given
performance criteria [63]. Third, it is still a common practice in the state of the art
solution to employ the simplified models for the description of the dynamic
behaviour of DC-DC converters.

However, in the work [100], we can find the MLD solution of a DC-DC buck converter
that has a simpler state space representation than a DC-DC boost converter.
Additionally, it does not have a non-minimum phase dynamic in the CCM operation.
Here, the nonlinearity of a DC-DC conversion is grasped and the problem of duty
cycle prediction underlined. While in the continuous state space representation and
the analog controls the mathematical problem of the closed loop transfer function is
a transcendental, in the discrete controls, we have a restrictive formalism that
makes the problem solvable. During the one scan time, the control variable has a
fixed value and cannot influence differently than predicted at the predeceasing time
scan, but one could predict a step-ahead evolution of states causally linked during
the successor time scan. The same idea is found in the mentioned work [3,17,100]
where the MLD form emphasizes the v-resolution approach.

Closely, the suggested solution is quantizing the genuine hybrid time execution of
the automaton in Figure 2.13, in the part related to the continuous evolution of
Definition 2.8. However, the evolution from the discrete state g, to ¢, happens,
derived by the new shorter discrete time quantifiers. Herein, the results show that
the modelling error decreases by incrementing the v-resolution, which can be
understood as the shortening of the prediction horizons, equidistantly placed in the

range [t; ,1:,.'] =T.
To drive the MLD model of a DC-DC buck converter, the authors of this approach lift
the original state space for additional discrete variables. The subperiods
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n€{0,1,...,v -1} of the switching period 7, are equal to the new discrete time base
T, =T,/v,where v=1and v EN. The new hybrid model was presented by

DE(n)+W¥ if o,n0,, (Model)
&(n) =1 D&(n) if o (Mode2) . (2.67)

n

DE(n) + P(vd(k) - n) if o,AnG,, (Mode3)

In equation (2.67), the hybrid model discrete states or modes {q,,q,,q,} are defined
by three different discrete time t, state space equations, selected by the logic
variables o, and o,,,, where ® and W are the state space matrixes. The vector

n+l?
En)=[i,(n) v.(n)]" defines the state variables. The state space expression is
derived for the buck DC-DC converter related to the on/off status of the transistor
on Figure 2.12b, by the similar procedure as shown in (2.51) and (2.52) of the DC-DC
boost converter. In contrast to that, the equations (2.67) show three modes of
operation. This additional mode is provided in order to minimize the error in the
averaging of the state space for the unpredictable time of switching. While the
transistor is conducting, the mode of operation is 1. The transistor’s off state defines
the Mode 2, and the Mode 3 is subperiod that contains the event of an opening of the
transistor. We see that the control variable d(k) remains a scalar variable related to
the switching period 7§, and the new hybrid model in equation (2.67) has been justa
sort of the nested state space that is not physically based. It is a possible
programming solution in the hybrid modelling tool HYSDEL. The general hybrid
model is automatically generated by HYSDEL in the form of an equation (2.18). As
the explained approach afterwards appeared in [3], which considered the
established methodology in solving a DC-DC boost converter, the level of
applicability of this modelling remains unknown, referring to the dimensions of
matrixes in (2.18) and the problem of the guard and the reset mapping in the DCM of
a DC-DC boost converter.

x(k+1)=A x(k)+B,u(k)
d(k)=1

x(k+1)=A_x(k)+B_u(k)
d(k)=0 & i (k+1)=0

x(k+1)=A_x(k)+B_u(k)
d(k)=0

Fig. 2.14 DHA of a DC-DC boost converter
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The newer research [2,3,101] and references there in reply on the above highlighted
ambiguity in the control of more complex DC-DC boost converter. In Figure 2.14, we
see a new hybrid automaton of a DC-DC boost converter, but now in a discrete form
based on the formalism of DHA given in Subsection 2.1.3 and Figure 2.3.

The discrete counterpart of the continuous dynamics is driven based on the
matrixes in (2.53), (2.66) and equations

T,
A, =e , B, =[e'dv-BE . (2.68)
0

To define the discrete states of each particular mode of operation {g,,q,,q;} [101],
one has to involve three logic variables 8(k), 8,,(k) and J,,(k). The 3 mode of

operation is not caused by the manipulated variable directly, and discrete states, but
it is the natural switching of the continuous evolution defined by

i (k+N)<0 < 8(k)=1 . (2.69)

As shown, we have to predict the inductance current evolution in the mode 2 and
the natural switching time that will be coded by logic variable §(k). This is because
the continuous evolution in period ¢,, is not defined by the control variable d(k)

only. The recursive prediction of the i, is obtained by
N-1
i,(k+N)=[0 1A, "x(k)+ X A,'B,) . (2.70)
=0~

One has to calculate the predecessor steps in order to provide resetting of the
inductor current at the time (2.69).
The resetting is done in-between modes 2 and 3 by equation:

10
x(k+1) = [0 Ol(Ad3x(k)+Bd3)=Ad4x(k)+Bd4 . (2.71)

In Figure 2.14, a DHA consists of a discrete state vector

x,(k) =[x, (k) x, (k)]", which obtains three discrete states, ie. [0 1]" , [1 0] ,
[0 0]", corresponding to the modes of operation. Discrete states' evolutions are
substituted by the logic variables 5f| k), 5_f2(k) and yield

x,(k+1)=08,(k) =[5, (k) &, (k) . (2.72)

Now, the following logic defines a discrete state transition:
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x, =0Ax, =0Ad=0 =8, =05, =0 — x,(k+1)=[0 O]

x, =0Aax, =0nd=1 — [0 1]
x, =0Aax, =lnd=1 — [0 1]"
x, =0nx, =lad=0 — [0 of . (2.73)
x, =0nx, =1ad =08 =0 — [0 O
x, =1nx, =0 A8 =0 — 1[0 1T
x, =lax, =0Ad=0 -1

As in the MLD model, the reset prediction of the inductor current is done based on
the predecessor discrete state and the existing one, there is a need to define an extra
discrete state x,, (k) = X, (k —1), and yield the new logic variable

Sy =1 < x, (k)=0nx, (k)=0nrx, (k) =1 . (274)

The logic variable §,,denotes the reset state while the transition is active from mode
2 to mode 3.

The final MLD state space expression for the DC-DC boost converter is given by:

x(k+1) = (A, x(k) + B, )x, (k) + (A, x(k) + B, )x, (k) +

(2.75)
H(A, x(k) + B, )1 = x, (k) = x, (k) = 8,,(k)) + (A, x(k) + B, )8, (k)

Further, if we substitute the auxiliary variables

2 (k) =(A,, — A, )x(k)x, (k)
2p(k) = (A, — A, )x(k)x, (k) , (2.76)
233(k) = (A,, = A, )x(k)0,5(k)

then the equation (2.75) progresses in a more compact form as suggested in the
expression (2.18)

x(k+1)=A, x(k)+B, +(B, —B, )x, (k)+

(2.77)
H(B, =B, )x, (k) + (B, =B, )8,,(k) +2,,(k) + 2, (k) + 2,5 (k)

To protect the system from chattering in mode 2 and simultaneously exchanged the
discrete transitions to modes 1 and 3, there is still a necessity to enrich the logic
from (2.73) by following logical expression

x, (k)y=1ax, (k)=0 — i (k+1)>0vd(k)=0 . (2.78)

Let us recall the expression (2.18) again. We see that to complete the MLD
expression proposal one should transfer the logic (2.69), (2.73), (2.74) and (2.78)
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into mixed integer expressions. This must be done by following the propositional
calculus in Table 2.1 in order to derive the matrixes {E,,....E,}.

2.3.4 ADC-DC boost converter model based on complementarity formalism

In the aforementioned formalisms of Section 2.3, where we can find the correlations,
the following formalism is done differently regarding the complementarity
characteristic of a DC-DC boost converter’s states. The theory presented in
Subsection 2.1.5 will be used to form the ODE (2.21). For the sake of the complexity
reduction, the modelling will be based on the ideal switches as the source version of
the applied formalism. This modelling principle is a member of the first level
modelling of converters, or aforementioned group in Section 2.3 as a physical
modelling. The concerns for a switching mechanism, consisting of semiconductors,
are unquestionably the reason. Although emphasizing the switching electrical
network for a specific location (2.21-2.23), as the combination of all possible
switching states, this modelling can also be considered as the comprehensive
representation of the converter’s level modelling.

Further, a DC-DC boost converter presented in the LC form (2.24) could be called a
switched cone complementarity system, as it satisfies the equations (2.25) and
(2.26)[2]. Hence, from Figure 2.12b and by using the Kirchhoff's laws, the following
equations (2.79) are derived. The equations contain the complementarity variables,
voltages and currents through the ideal semiconductors.

. -1 1. R+r1,. .
Ve =—"Vo+—I, +

lTr
CR C CR

.- 1 1
= Ve = +%iT, + E (2.79)

Following the complementarity formalism in rendering the equations (2.79), our
complementarity variables should agree with the expression

O<y(t) Lu(r)=0
u(t)=[v, i,l" v, —voltage over the diode i, —current through the transistor ~ (2.80)
y(t) =[v,, ip]" v, —voltage over the transistor i, — current through the diode

From the equations (2.79) and (2.80) it is possible to form the state space
expressions

x(1)=Ax(t)+ Bu(t)+ Ev(t)

y(t) =Cx(t) + Du(t) + Fv(t) ’ (2.81)

where the matrixes are

1 [_1 R CC(R+r) 0 . -
A=— ﬂ —CRrC ) B= *le ) C= 1+VC 1+rc )
CR+r)|—~ = o L 0 1




55
Hybrid systems, the modelling paradigm of SAS

1 —RrC 0 O
D=| 1..| E- _i,F=[Ol . (2.82)
0 -1 L

The state vector is x(¢) =[v. i,]' and v(t) = E(t) denotes the input source. The
output vector y(7) has also been defined by Kirchhoff's laws. It is now obvious that
this approach implements the electronic elements, a diode and transistor, by their
complementary parameters. Those are pairs {v,.,i,} and {v,.i,}, respectively.
Differently than in the basic approach, this formalism can be formed in the state
space expression (2.81); this is reminiscent of one of the other type of the HS
formalisms. The equivalence of the different HS formalisms is introduced in the
literature [25] and Chapter III.

Originally, from the first authors [12,102] that applied this theory, discussed in
Section 2.1.5, equations were assuming the ideal electrical switches. In the newer
releases [13] and in order to elevate the modelling accuracy, those elements are
defined more physically accurately. The equations (2.79), (2.81) and (2.82) are valid
for all modes of a DC-DC boost converter operation while the external control of the
switches guides it through, meaning that a DCM is also tackled by the formalism.
That is naturally archived by the positivity of the complementarity variables (2.80).
For the example, it is relatively easy to show that the above equations are blocking
the negative values of inductor current and defines a converter operation in DCM. In
the similar way, and by selecting the position of electrical switches, we can prove the
consistency for the other HS modes [102].

2.3.5 ADC-DC boost converter model in DCM, the qualitative examinations

One of the analytic examinations of a DC-DC boost converter in DCM was given in
[7,8]. The work has rendered a new sight in the modelling of a DC-DC boost
converter. It is issued at the emerging time of the mathematical qualitative theory
and the hybrid systems’ modelling theories. The results of the mentioned article,
together with the anomalies of the hybrid systems’ modelling theories could be
acknowledged as the basic inspiration for this thesis. In the simulation and the
experimental tests performed in this thesis, we use the same DC-DC boost converter
example with all its physical values. To receive the same results as from [7], and to
continue the examination of the problem from the aspects of the state of the art
academic work in this field, we have simulated and examined this example more
comprehensively from the side of the theory in Subsection 2.2.2. The modelling
objectives in most of the different modelling formalisms in general are taking the
switching period 7; of the pulse width modulation as the genuine part of the
conversion and further control. It is certainly influenced by the final goal, which is
the physical implementation of derived controllers that are based on those
modelling approaches.

During the period 7; and by knowing that 7, +17, +1, =1, -1, =T, we can stack the
consecutive solutions for each time interval 7, and form the iterative map for the

complete period. In other words, we construct the overall solution by considering
the explicit linear system solution in the piecewise smooth time interval as
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x(t) =, (t - 1 )x(t,) + f @(t —7)B,Edt (2.83)

Iy
and generally through different time periods [7]
O(1, +1, +1, ) =Dt )1, )D(7,) : (2.84)

In sequel, it yields

1+

x(t,,,) = @1, )@, (1, )P, (1, )(x(tk)+ J®(t, -1)B,Edt |+

Tk

+@,(1, )P, (1, )| [ P (1, +1,, -T)B,Edt |+ : (2.85)
tp+ty
@1, )| [yt +1, +1, ~T)BEdr

Our final and the general expression will evolve in

X(tk+1) = f(x(tk)’dk) ) (286)

t
for a duty cycle d, = % as a control signal of the closed loop control.
N

To derive the transition matrixes for each mode of operation, we will employ
Taylor’s power series

a1
D(1) =1+ E—'Ai"t” fori=123, (2.87)
n=11¢-
and also taking into account that the selection of C and R elements in Figure 2.12b
will be on the way that the time constant 7 = RC >> Tj.

In DCM of a DC-DC boost converter, it is indicative that sequentially in every period
at the start time of the interval 7, , the inductor current drops to 0 (i, (¢) =0). This

means, for a time ¢ €[¢,,1,,,], the system can be presented as an iterative map,

Definition 2.25. It will be a first order map, as it is constructed right in the moment
i, (1) =0. That is why the further expressions with x will be scalar and denote just a

voltage over the capacitor v,..

The inductor current during the timez, is linearly rising by the rate 7 to its

. . . X =
maximum value i and afterwards decreasing by the rate

max ’

for a timer,

Thus, our interval 7, can be expressed with a duty cycle d,

(2.88)
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Now, we have a sufficient number of equations (2.85), (2.87), and (2.88) to form a
Poincar map (see Section 2.2.2)

ld 2E2
Xy =0'x, + Fd,
x, -E
(2.89)
1 T 7 . RT
a =1- +— s =
C(R+1.) 2C*(R+1,) 2LCQR+1.)

More details relating to the overall transition matrix can be found in [7].

Referring to the conclusions in the mentioned article and complexity reasons
explained in Subsection 2.2.2, in the sequel the converter’s control law will be
simpler

Ad = -KAx. (2.90)

That equation (2.90) is deducted from a desired value Z) (see also Subsection 2.3.1),
bearing in mind that the capital letters mean the steady state values, and form the
final control function h(.):

d, =D -K(x,-53)

0 d, <0
h(d,) =41 d,>1 . (2.91)
d, 0=d <1

The Poincar map of the closed loop control is

172 E?
Y  =o'x +M , (2.92)
k+1 k Y - E

k

while the A(d,) inherits a saturating nonlinearity of the PWM [7].

As mentioned, the simulation will be done on the Simulink platform [29] with the
selection of the elements in the Figure 2.12b, as in the article [7]. Table 2.3 presents
those values. The electric circuit, including its elements, is designed to allow a DCM
of the converter by the realistic switching period 7.
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Elements | Values
333.33 us
16V

25V
50w

208 uH
222 uF
125 Q
0.012Q

SO glv (mPS

Table 2.3 Elements selection related to the system in Figure 2.12b

The desired value 2, for a desired operating point, is calculated from (2.92) once
the x,,, = x,, thus

D =\/w_ (2.93)

pE?

Pursuing the selection of an operating point based on figures from Table 2.3, we will
define the Poincar map with its real coefficients

307.2(0.2874 - K (x, - 25))*
x, —16

X, =0.8872x, + (2.94)

The above-defined Poincar map will be qualitatively examined based on the theory
presented in Subsection 2.2.2 and in [2,81].

The discrete equation (2.94) will be tested by the iterative change of K, with a
Grapher 2.1 software, Macintosh [103]. This way, by 20000 iterations, we are
varying the parameter K(recall (2.42-2.44) in general and the parameter u) in the
range from 0.06 to 0.27. It is important to note that the applied K to an approximate
Poincar map (2.94) is incremented by the irregular steps, built on the simple
function

K, +k
Kk+l =
100000

for K, =0.06 and x, =25 . (2.95)

The captured result is an orbit diagram presented in Figure 2.15.
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0,0p
0,0p

0
0,07p
0,085
0,095
0
0,10p
0,1
0,11
0,1p
0,125
0,1p
0,13p
0,14
0,14
0,1

Fig. 2.15 Orbit diagram of the one-dimensional map (2.94)

With the selection of the reference s =25V, our correction parameter K is limited
with the stability criteria for a certain range defined by the stable multiplier ‘)J‘ <.

The multiplier is defined with the first derivative of the Poincar map at the
equilibrium point x°

flx) =2 . (2.96)

A first derivative is

2D -k (x, - 'E° Dk (x,-5))BE?
x, - E (x, - E)

and to define the certain stability range, we have to simplify the equation (2.97) by

knowing that at the equilibrium point the x, = X. Thus, the multiplier evolves in

, (2.97)

| _Zﬂﬁ]Ezk ﬂZﬁIEZ

A= . -— 2.98
“TYCE (x' —E)* (2.98)

If we implement the real values selected in the example, it yields

-1<0.5739-19.62K <1 (2.99)

a stability criteria for the selected reference value s =25V

The closed loop control system with the elements’ values defined in Table 2.3 is
stable around the reference point s =25V, if our control parameter is in the range

0.02171 <K <0.0802. (2.100)
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Once we have changed the parameter to violate the range (2.100), a DC-DC boost
converter experiences the bifurcation or chaos.

The expected points of a bifurcation are the marginal cases when w =1, that is in
our example once K =0.0802.

I[f we compare the analytically driven results with one presented as an orbit diagram
(simulation result) in Figure 2.15, then we can recognize just the negligible
discrepancies explainable by the rounding errors in the simulation.

The map (2.94) that is analytically examined, as well as the simulation, gives two
fixed points for s =25V . Therefore, for any K there exists an extra fixed point.

As from equation (2.94), those are real results for an each particularK.

cobweb for ®x{n+1)
o0 ! . ! ! ! . !

R e e e
) S N S A TLL S .

S Sy oA ) A -

(Y]

e e e

' ' '
' ' ' ' ' ' '

T B e -
' ' ' ' ' ' '

e T

- i | i | i | i
20 25 30 35 40 45 50 a5 B0

Fig. 2.16 The cobweb for a first-iterate Poincar map (2.94) and for a different K

Figure 2.16 is presenting a cobweb diagram [81] for three different parameters K.
While K laying in-between the stable margins of (2.100), both fixed points are
stable. At the moment we reach margin, x* =25V becomes unstable.

That fact reminds us of a definition of transcritical bifurcation, and from that point
we enter the area of the periodic windows that are in this case period-2 cycle. With
the above analysis, we could only assume that it was so. As according to definitions
[81], the first iteration of the unimodal map cannot develop the period-2 cycle. It
develops in the second iteration and only if there are two real fixed points p and ¢,

where f(p)=q and f(q)=p, for f(f(p))=p and f(f(q))=g. The second
iteration must be derived and denoted as f(f(p)) = /' (p).
Thus, in our example it yields

BUD-K (el +P DKy -5)°E? -5)2E2

WD -k-(x; —5)2E2 x,—-E
f(Z)(x y=allalx +/3)( k + k . (2101)
k k x-E alxk+ﬁ1(D_K(xk_s))2E2—E
xk—E

Equation (2.101) is a quartic polynomial equation. That gives four fixed points as
solutions, once equalized with the equation for x, by using the same constants as in
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(2.94). If solutions are complex, the period-2 cycle is impossible, but opposite for
solutions in the set of real numbers.

For the selection of the parameter K, which stays inside of the stable range, and
equation (2.101) that is equalized with x,, it gives two real and two complex
solutions. But out of that range the all four solutions are real. Furthermore, as
expected, two solutions are same as those in the first iteration done for the same K.
If we set the:

K =0.09,

o' =0.8872,
D =0.2874,
E =16, and
s=25

then for f¥(x,) = x, the results are
x1=2500 x>=3330 x3=2420 x4=2632

The aforementioned conditions for the birth of the period-2 cycle are fulfilled in the
points x'; and x'4.

As shown, a bifurcation happened by the generation of two extra fixed points will be
characterized as a flip bifurcation, and those are mostly connected to the period-
doubling effects. Figure 2.17 is a cobweb diagram for a second-iterate map, which
clearly presents the birth of two additional fixed points at the chosen reference
point.

cobweb for second iteration of Poincare map
34 T T T T T

> -

x(n+) [v]

22 24 25 25 30 32 34

Fig. 2.17 Cobweb for second-iterate of Poincar map for k=0.09
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The stable fixed points of the second iterate map will be possible to analyse in the
same manner as done in (2.96), (2.97) and (2.98), except that now the function is
f(z)(xk)~

The multiplier of the second iteration map is a large equation, and we are not going
to present it, but the stability of the new born fixed points can be computed by
following

d
2= (fO,, = [N P) = [@P) - (2.102)

The above given multiplier is a stability criterion of a period-2 cycle.
For the K =0.09 and

£1(24.20) = -1.4282
£'(26.32) = -0.8910 (2.103)

the multiplier A rises over the margin 1, and the period-2 limit cycle is unstable.
Higher period cycles are related to the higher order iterations, but the analytical
approach produces complicated equations and mostly depends on the graphical and
numerical arguments.

The orbit diagram in Figure 2.15 roughly reveals regions of the parameter K, where
the doubling periods could be expected.

In the sequel, the examination of the effects in the selected example, provoked by the
parameter K selection, we will test on the developed hybrid simulation model of a
DC-DC boost converter driven in DCM, Figure 2.18. It is built with the control
algorithm as defined in (2.90) and (2.91).
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Fig. 2.18 The simulation model of a DC-DC boost converter shown in Figure 2.12b

With the selection of different K parameters, carefully chosen and based on the
Simulink numerical simulation, we prove the existence of the expected phenomena
called the intermittency route to chaos.

First, the parameter selection is done on the proven stable range. For K =0.06, we
see a smooth operation and the stable output voltage v_ in Figure 2.19. Then, we
have crossed the marginal case, and changed the parameter to hit an analytically
examined range of the period-2 cycle and bifurcations. Now, K =0.1 and Figure 2.20
present the result. It can be seen that the completely discontinuous mode is no
longer guaranteed, as our state variable i, did not fall completely to 0. We have
reached the edge of a partly continuous mode. The effect is worse as we go higher up
with the parameter. Equally, for the parameter selection K =0.11 we enter the
period-4 cycle in Figure 2.21, and for K =0.1275 the period-8 cycle in Figure 2.22. In
the mentioned windows of the parameter selections, we have experienced a birth of
an extra fixed point and the typical flip bifurcations. Those windows are
intermittently interrupted by a chaotically assigned nonlinear dynamical system
behaviour. The selection K =0.135 in Figure 2.23 is a typical result.
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Scoped

0.7995 . 0.8005 0.801 0.8015 0.802 0.8025 0.8035
t[s]

0.7995 . 0.8005 0.801 0.8015 0.802 0.8025 0.803 0.8035

t[s]

Fig. 2.19 The results of a model simulation (Figure 2.18) for K=0.06

Fig. 2.20 The results of a model simulation (Figure 2.18) for K=0.1
and period-2 cycle
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Scope 3
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Fig. 2.21 The results of a model simulation (Figure 2.18) for K=0.11

and period-4 cycle

T=333e-6

0.8405 0.841 0.8415 0.842 0.8425
t[s]

0.8405 0841 08415 0.842 08425
t[s]

0.843 0.8435

0.843 0.8435 0.844

Fig. 2.22 The results of a model simulation (Figure 2.18) for K=0.1275

and period-8 cycle
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Fig. 2.23 The results of a model simulation (Figure 2.18) for K=0.135 and chaos

Our simulation model will be further tested for an input voltage change, previously
assumed as constant. For a slight change of an input and selection of K =0.06, the
system is still stable with a clearly recognized transition period and higher the
output amplitude deviation. If we consider the realistic applications, we could expect
a certain change of the load and source at the same time. That would make the
presented converter’'s control (2.91) unstable and require more sophisticated
solutions [56]. The expressed statement leads to the further development of a
superior control algorithm starting in Chapter III.
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Chapter III

Identification of SAS, approaches to smoothing
discontinuity

A comprehensive view over the controls in a nonlinear dynamical system brings
about the unavoidable conclusion that a successful tackling of complexity has to be
made by involving a multidisciplinary methodology. Namely, including the essential
knowledge of the physical system, mathematical modelling and, finally, advanced
and intelligent control algorithms have to evolve in a stable and optimal control
solution. Without a doubt, HSs are appealing and modern examples. Therefore, the
subsequent work integrates several areas into the control theory in order to fulfil
the main goal of controlling the nonlinear dynamical system, focusing on the
nonlinear phenomena exclusion.

Generally, even the most theoretical developments in the field of HSs assume a
known model of the process at hand [45], and we are already questioning a well-
developed model with the simple applicability test. Figure 3.0 presents the
modelling paradigm in HS and its equivalence [2,25]. We additionally assign the new
modelling approaches with a dashed line, except for the complex hybrid models
built from the multiple basic models. An arrow is used to denote a logical inclusion;
a number is the mathematical propositions of the equivalence presented in [25]; and
a star is the conditioned inclusion. The diagram has to position the novel
fundaments of the subsequent study in a broad view. In contrast to typical and basic
model representatives in HS, i.e. PieceWise Affine (PWA) models, Linear
Complementarity (LC) models, Extended Linear Complementarity models (ELC),
Mixed Logical Dynamical (MLD) and Max-Min-Plus_Scaling (MMPS), the
Identification Based (IDB) modelling represents a new group of models rendered by
different identification approaches and algorithms.

vy

Fig. 3.0 Established types of hybrid models
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Most referenced literature [2,25](and references therein) from the field very rarely
mentions fuzzy approaches and fuzzy control in HS. Instead, it presents the fuzzy
system merely as an example of a HS. Generally, and in contrast to subsequent work,
the identification is exclusively used in examples where the process originally has
the absence of a known analytical model. Those methods are usually grouped into
four groups for the identification of the switched affine autoregressive exogenous
(SARX) or the piecewise autoregressive exogenous (PWARX) models [2,45]: the
algebraic procedure [46], the clustering-based procedure [47], the Bayesian
procedure [48] and the bounded-error procedure [49]. The problems
characteristically related to the specific procedure are also correlated with respect
to the model order, the number of regions, the number of logical variables and the
dimensions of the regression vectors. Similar problems are the objectives of a whole
field of Fuzzy Identification, which includes the identification of HS [50-53]. Modern
approaches combine the structure of the HS together with the features associated
with the fuzzy modelling, using it in identification and control [54], or
comprehensively in the identification of complex systems.

This field of systems is extremely wide and very much differs in terms of the
methodology influenced by the selected process or physical system. Therefore,
based on emerging technology, it is defining a new, broader discipline that is
popularly called cyber-physical systems.

We will concentrate our research and studies in the direction of SAS,
distinguishing it either from the switching affine systems (referring to
autonomously switched) or the PWA systems.

3.1. Identification

System identification is a process that builds the mathematical model of a system,
based on the observed data. For the mathematical models, analytically obtained by
the difference or differential equations, we rely on the “laws of nature” that have
their roots in earlier and empirical human work; the identification is directly based
on the experimentation. From the recorded input and output data, the identification
performs a data analysis in order to infer a model. In real-life systems, the analytical
approach is rather cumbersome and the mathematical modelling is coarse to devise
all physical insights. It seems that there is an impenetrable, but transparent screen
between our world of the mathematical description and the real world [104]. We
can just partly tackle some aspects of the physical system, but we can never
establish any exact connection between them. Therefore, our acceptances of the
models should be guided by their “usefulness” rather than pure “truth”.
Nevertheless, to evaluate and devise the identification methods, we shall rely on the
more pragmatic and mathematically defined approach. Otherwise, it is impossible to
reinforce the observer’s point of view and evaluate the gathered models.

Based on those thoughts, there is a fine line dividing the analytical approach from
the identification, and especially considering current computing abilities. It is
certainly a motivation of this thesis to elevate the accuracy of the model, but bearing
in mind a final objective, that is an applicable and cost-effective control solution in
SAS.
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Generally, the main course in the identification is not to estimate something that is
already known, but to utilize the prior knowledge and physical insights into the
modelling structure. The physical knowledge about the system that has to be
identified is “color-coded” by the typical identification terminology. Related to the
physical knowledge about the system, one can group the identification, i.e. the white-
box, the grey-box or the black-box modelling. Respectively, it is a gradation of the
prior knowledge from the complete physical insights to no physical insights being
used. In the literature [30], we could also find the subgroups of the largest grey-box
modelling that are called a “physical or a semiphysical modelling”. The main
difference is associated with the level of involvement of the prior knowledge. Thus,
the semiphysical approach suggests a usage of the physical knowledge just in the
certain nonlinear combinations of measured data, while the physical approach is
already suggesting a state-space model of a given order and structure.

In the example of this work, applicable to the broader range of SAS, we suggest the
combination of both subgroups, evolving in the grey-box identified model. A survey
given in Section 2.1 poses the modern analytical formalisms that have a twofold
impact on the control methodologies.

First, the hybrid system formalisms elevate the model accuracy, and give better
selectivity in forming the proper control algorithm.

Second, which is a drawback of the accuracy, it also elevates the complexity and

brings new side effects encapsulated into the restrictions of the particular
formalisms.
For the example, the MLD approach to the DC-DC boost converter (Subsection 2.3.5)
gives a complete analytical solution in the sense of the simulation properties, but it
is certainly not cost effective in comparison with the physical merits of the problem.
The authors of the method [26] proclaim that the DHA formalism is solving a
problem of the Zeno Effect. On the other side, it can be achieved just with the pure
synchronization, and by taking an assumption that the sampling time is the
infinitesimal and the continuous system inactive during a discrete state transition,
Subsection 2.3.3. In other words, the continuous system has to be transformed into
the discrete system. We can find that the following authors [3,17,98,99] use the
same formalism in solving the DC-DC converters, but they program the nested
models to predict a natural switching that happens during the original system time
sample. That is the way we upgrade the original MLD modelling, but also practice
the ability of the Zeno Effect. It is obvious when we observe it from the side of the
general discrete model based on the overall time sample 7;. Otherwise, if we
assume only the CCM, the MLD model of a DC-DC boost converter is reduced back to
the averaged switched model (2.54), yet with more accurate prediction of the
switching event inside of the discrete time sample 7. The latter is possible if the
online processing abilities allow the amount of the extra workload due to the lifted
state space matrices.

The main physical problem of PEC is in the nonlinearity induced by the
construction of the electrical components and the fact that the system has only a
physical sense if it works in the closed loop control. While it works in the closed loop
control, the nonlinearity happens related to the duty cycle too (Subsections 2.2.2. &
2.3.5).

If we take, for the example, the complementarity formalism, which is closer to the
physical modelling, it also collides with the strict restrictions of ideal switch
involvements. The analytical upgrade by the physically accurate switching
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expressions leads to the inapplicability or lack of cost effectiveness [13]. It is not
clear what is the most suitable control methodology that could follow this type of
modelling formalism. The sliding mode control is one of the performed control
methodologies [12], but again, it is applicable if the switching time is infinitesimally
small and the system has known the state variables’ physical margins [105].

In contrast to those formalisms, we have also presented a distinctive analytical
formalism (Subsection 2.3.5), based on the mathematical qualitative theory.
Although, it is rendered for a DCM of a DC-DC boost converter, it reports all sorts of
nonlinearity effects, apart from the fact that just a trivial control algorithm was
examined (2.90).

All mentioned experiences support our idea of forming a new modelling formalism
based on the grey-box identification. As we see, the example of this work asks for a
nonlinear system modelling where the nonlinear structures will be tackled as the
concatenation of a mapping from the observed data to regression vector, and a
nonlinear mapping from the regressor space to the output space [30].

Let us take the observed data from a discrete dynamical system as the sets of input
and output measured samples in the equidistant time spans:

ul, =[u() u2) ...uk)]

(3.1)
¥, =@ yQ2) ... y(k)]

Our task in the identification is to look for a relationship between the past
observations [u|k_1,y and future outputs y(k), which can be expressed as

e
y(k) =gu(k-1),y(k-1))+e(k) . (3.2)

From the above definition of the identification, it is expected that the identification is
not an exact expression of the physical system. Thus, (3.2) takes into the
consideration that the function of previously observed data g(u(k-1),y(k-1)) is an
approximation of the future output associated to an error function e(k). The
antecedent observed data has to be linked by the arbitrary number of functions that
will be parameterized by a finite-dimensional parameter vector 6, and thus the
approximation is more accurate

gu(k-1),y(k-1),0) - (3.3)

To devise the most accurate approximation, we select the cost function

n 2
min 3 |y(k) - g(utk-1),y(k-1),0)] . (34)

The convex programming has to be done based on the sampled data (3.1) for
k =1,2,...,n samples, at the time k7. As the (3.3) expression is too general, it is more
convenient to express it by the concatenation of two distinctive mappings.
Therefore, the complex (3.3) will be decomposed into
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gu(k-1),y(k-1),0)=g(@(k),0) =g(@(u(k-1),y(k-1)),0). (3.5)

The vector ¢(k) is called the regression vector and, in a more general form, it can be
a function of an extra argument @(k,n). All diversities of different identification
principles and methodologies are based on the aforementioned equations (3.1)-
(3.5). It can be objectively surveyed by two crucial points of view. First, it has to be
observed from the corner of the proper selection of a regression vector or vectors.
Second, there has to be a model structure in the mapping from the regressor space
to the system’s output. That point of view was emphasized by the plausible work in
[30], where the objective sight is given to the different directions in identification
methodologies at the end of the 1990s. Herein, we are mentioning the most
distinctive approaches.

There is still a tendency to name different identification principles driven by the
selection of the regression vector, which is a known and established approach in the
linear systems’ theory [106]. As our interest is to identify a nonlinear model, the
final identification structure will have added just a nonlinear prefix. So, we distinct
between the following types of models related to the selection of the regression
vector components:

= Usage of only antecedent inputs u(k —i), for i =1,...,k —1, as regressors is
characterized by Nonlinear Finite Impulse Response (NFIR) models.

= Usage of combinations of antecedents, u(k —i) and y(k —1i), is grouped to
a Nonlinear Autoregressive eXogenous (NARX) models.

= Usage of combinations of antecedents, u(k —i) and y,(k —i) that denote
simulated outputs from the u(k -1i), is grouped to a Nonlinear Output
Error (NOE) models.

= Usage of combinations of antecedents, u(k —i), y(k —i) and &(k —i|6) that
denotes a prediction error &(k —il0) = y(k —i) - y(k —i|9), is grouped to a
Nonlinear Autoregressive Moving Average eXogenous (NARMAX) models.

= Usage of combinations of antecedents, u(k —i), y(k-ilf), e(k -i#) and
¢,(k —i0) that denotes a simulation error ¢,(k —i) = y(k —i) - y,(k i), is
grouped to a Nonlinear Box-Jenkins (NBJ) models.

= The group is based on the selection of nonlinear state space models that
are characterized by the involvement of the virtual outputs from a
complex networked model structure. It is certainly reserved for heuristic
approaches, i.e. neural network and fuzzy modelling.

A different model structure, g(@(u(k-1),y(k-1),1),0) (i-regression vector
parameters in general), means the function expansion, defines modern nonlinear
identification approaches. If we select the regressor vector as @(k)E ', then the
characteristic function expansion

8@.0)=3ag(p (3.6)

is the model structure based on basis functions g; The selection of (3.6) and the
regressors unify most identification methodologies. In the sequel, the basis functions
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g:(@) =K@, B, y) =k(B(@-7) (3.7)

generically denoted by x(.), will be a main discourse in the definition of the
methodology. New parameters f, and y,, which respectively denote directional
property and position or translation, are parameters that have to define a different
nature of basis function. Simple examples of x(.) are the unit step, the interval
indicator, the sigmoid function, the Fourier series, etc. The latter is a typical example
of a Global basis function, where f, are the frequencies and y, the phases. Former
functions are representative of Local basis functions. Both groups of functions are a
subgroup of the broader group of single-variable functions.

In contrast to the single-variable functions, there is a group of methodologies using
the multivariable basis functions:

= Tensor products, which are constructed by the product of single basis

functions, e.g. g,(®,)" &,(@,) .. g,(®,).
» Radial construction, which is formed by the typical expression

8@ =x(lo-v,) . (3.8)

and the function argument is a typical norm in the regression vector
space, e.g. quadratic as ¢’ B for B, >0 and y, =0.
= Ridge construction, which is given by the expression

@ =x(Bo+y) | (3.9)

where @(k), B, € A" and v; € [7. Characteristically the basis functions
are constant in some directions as /g’iTcp = const.

More complex identification methods are differing in their networked construction.
Those constructions we can mostly recognize in the heuristic approaches. Some of
the methodologies are differentiated by Multilayer networks [107,108] or Recurrent
networks, characteristically for neural-networks [109,110].

Throughout the literature, we see that the broad identification realm can be more
objectively considered by applying the above-mentioned extents in the identification
theory. Consequently, some well-established methodologies give a good example
where the names of the basis functions become the names of the identification
methodologies. The wavelets identification can be considered a typical one.
Furthermore, some other well-known basis functions are to be mentioned, e.g. the
Kernel estimators as typical bell-shaped functions, or B-splines, Hinging Hyperplanes
that are respectively the piecewise polynomials or hinge functions [111]. The latter
is also representative of the basis functions in the neural network identification.
Similarly, the combinations of the ridge basis functions and the sigmoid mother basis
function, altogether constructs the multilayer network called the sigmoid neural
network. Another representative of the heuristic identification approach is a fuzzy
identification that can be seen as identification with the particular choice of the basis
functions constructed from the fuzzy set membership functions.
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Common to all identification methods is to achieve a minimal error of the
approximation to the real process by different minimization methods applied in
(3.4). Accordingly, the result of that routine is a definition of the model parameters
0 ={a;.B;,y;}. The minimization is performed on function

: N, 1 X ?
minV(6,2,") =— 3[y(k) - g(p(k), 0)| (3.10)
6 N k=1

by regarding a given finite set of the measured pairs
2" ={(0).@k) :k =1....N} : (3.11)

The accuracy of our identification is proportional to the selected number of pairs N.
In equations (3.4) and (3.10), we have selected a quadratic norm as one of the most
used cost functions. The most efficient search routines are based on the iterative
local search in the “downhill” direction from the current point. Generally, the
iterative process of parameter definition is assigned by

gln+) _ gn) v
0" =0""- ull"Vf, (3.12)
where  u, denotes the step size, [, a matrix of search direction modifiers and

Vj‘n the estimated gradient V' of the equation (3.10). There are different and
established methods of search directions that have known and distinctive names:
= Gradient method
H =1 I-identity matrix
= Gauss-Newton method
h,=H, =V ()
= Levenberg-Marquardt method
H =H, +0l J-real number that assigns the step size
= Conjugate gradient method
It is reformulated Gauss-Newton direction by difference approximation of
V' (©).

It is still a boosted growth of the academic solution, suggesting different
minimization approaches that are strictly related to the different model structure.
Certainly, there is no automated tool that can define the most efficient methodology
for our identification problem, referring to the aforementioned identification merits.
Similarly, all finial minimization algorithms can easily “be stuck” into the local
minima and result in an ill-conditioned model. The prior physical knowledge is the
key solution of those problems, but in absences of that path, one should use a
random search, random restarts, simulated annealing and genetic algorithms [30].

3.2 Fuzzy identification as the universal approximation

The complexity of our objectives in the modelling of SAS directs in the selection of
the applicable identification framework. In Chapter II, we introduced different
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analytical approaches that are framed by strict formalisms and restrictions. We can
generally conclude that HS modelling has distinctive constraints that have once been
applied to some of the SAS. The example in this thesis, a DC-DC boost converter,
should not be taken so often in HS modelling theories as a trivial representative of
the method’s applicability. The natural processes are too complex to be framed by
some assumptions, e.g.:

1. Synchronization of the sampling with the continuous dynamical system
evolution

2. Assumption that switching is ideal

3. Definition of the maximum and the minimum constraint of the system state
variables for the physical systems

4. Assumption that in physical systems we deal with the finite set of the initial
conditions and the ability to define a reachable set of HS in real time

5. Definition of the reset mapping and guards is at least similarly complex as
modelling itself on an infinite set of discrete states and initial conditions, etc.

With awareness of mentioned assumptions that are strictly related to the selected
analytical formalism in Section 2.1, the identification conducted in order to identify
the physical system, rather than applying the imperfect analytic formalism, emerges
as an advanced solution. In this thesis, we question the pragmatic approach of the
analytic modelling in the cases in which the transcendental mathematical problems
exist on the border of indeterminism. The intention to model a DC-DC boost
converter in the only physically proper way, that is a model of the closed loop
system, led us to the problem that antecedents has to be defined by knowledge
about descendants. We see that employment of DHA and MLD modelling gives the
solution by taking into the consideration that a discrete step of sampling is
infinitesimally small in comparison with the natural frequency of the system. In the
example of this thesis, it is not the case. The natural frequency of the PWM in driving
the DC-DC boost converter disapproves it. Attempting to supersede and overcome
that problem by the prediction, based on the elevating of the sampling frequency
(Subsection 2.1.4), brings unnecessary complexity in comparison with the accuracy
(Subsection 2.3.5).

From the side of the controls, our objectives in the modelling of SAS are not
different, but integrating all known about the way to raise the applicability and
accuracy for the natural examples. The identification will be comprehensively
guided to tackle all physical problems, and to produce a model that can be further
used in the well-established control methodologies. The main objective in the
following identification methodologies has to generally reconcile the model’s
complexity with accuracy, thus:

1. The model produced shall not elevate a simple state space averaging model
rank, but rather minimally preserve it.

2. The physical constraints in the subsequent modelling approaches will be put
in the function of reducing the real-time complexity and not the opposite.

3. The level of accuracy will be predictive throughout the whole universes of
discourses of the state variables, previously defined and based on the
physical constraints.
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4. The model has to be global and give an ability to develop a robust control
solution.

This way has to evolve the method’s usefulness, and precede an exemplification of
the formalism that is frequently the final result.
To succeed, we will select a heuristic methodology in the identification. The Fuzzy
Identification is certainly a heuristic approach built on the principles of the human
reasoning based logic, commonly called Fuzzy Logic (FL). The FL becomes a popular
logic methodology in different disciplines of science. It has a growing use in
cybernetics, and software programming, but also in the medicine and social science
that makes it the “new logic” of science. In the work of Licata [112], from a
philosophical point of view about the FL, the theory demystifies a dominant success
in current science. On a general basis, he explains the usefulness in the treatment of
the natural phenomena and quantities by many-valued logic.
It is explained that the number of truth-values and the possibility to vary the
number of truth-values assign different degrees of complexity in a logical sense.
Thus, we can differ three logical complexities:

= True/false logic

= True/false logic enriched by a fix number of truth values (simple

polyvalence)
= True/false logic enriched by a variable number of truth-values (complex
polyvalence).

The latter is a multiple system containing the subsystems with different numbers of
truth-values. FL belongs to the complex polyvalence. The variable truth values are
placed between the classical logic extremes of 0 as a false and 1 as a truth. Modern
science proves that many of the dogmas related to the above classifications are
unrealistic and unfounded. The most common is between the probabilistic theory
and FL. Based on the experience in the applied cases, it would be wrong to reduce
the FL onto the probabilistic theory. Nevertheless, it is wrong to use the FL to
express and devise probability problems. In conclusion, the probabilistic theory is
rather used to formalize “uncertainty” and the FL to treat “vagueness”. Those two
terms could be formulated in the technical sense. An uncertainty could be
understood as an incompleteness of information while the vagueness regards an
indefinite relationship between words and objects. It would be unfair to group the
former into the “subjective knowledge” methodology, but this work or thesis is
selecting FL as the basis for the well-defined identification methodology, employed
to improve our objective knowledge of the system.

3.2.1 Fuzzy Logic Modelling in General

Already from the several formalisms of HSs, and from the history of modelling the
HSs, the switching of continuous natural processes necessarily brings complexity. As
we have seen from the qualitative theory, the nonlinear phenomena are strictly
connected to the grade of smoothness on the switching border (Subsection 2.2.2).
Even if the analytic approach exists, we have to magnify the fundamental
assumptions in applying of those approaches. In turn, we recognize that the most of
HS formalisms assumed that the switching as a no-time event. It pragmatically
constrains the performance of the modelling methodology and makes it applicable
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for relatively “slow” dynamical systems. Generally, for the nonlinear dynamical
systems, a decomposition strategy leads to the PWL systems, and systems’
linearization around the operating point. Therefore, the assumption that the
nonlinear system behaves linearly around the operating point, consequently put an
extra constraint on the modelling accuracy and stability margins of the future
control system, based on that modelling principle. Lastly, the robust modelling
considers that the process is prone to the operating point deviation, but in most of
the cases assumes that the constructive process elements and their parameters are
not functions of the operating point. That assumption is elevating our analytic
modelling uncertainty and strongly interferes with the prediction of the modelling
accuracy.

In the example of our work we use a modern and heuristic identification approach in
formalizing a model that has to devise a predictive modelling accuracy. The
abovementioned assumptions will be neutralized by the identification and modelled
in the static FL model of known accuracy margins for wider and defined operating
point fluctuations. Our methodology in the identification of SAS will use FL to
encode the natural system'’s vagueness, from the human perspective.

Instead of being limited by the bivalent logic, in our approach the mathematical logic
rules of inference [70] will evolve from the traditional propositional logic rules

A,A—B

| ’Z . (3.13)
modus tollens T’

modus ponens

where Aand B denote the formulas of the propositional logic, and Aand B their
negations. The logic rules (3.13) of the propositional logic are considering the
tautology of formulas.

***Definition 3.1**[70] (Tautology) A formula A of propositional logic is tautology if
f(A) =T forevery truth assignment f.

In Definition 3.1 the truth assignment is always true (7) or otherwise false. Simply,
the tautology can be expressed by the logical 'or’ connective as Av A. This approach
is a complete certainty and is not appropriate to encode uncertainty. By underlining
the heuristic principle in the FL, we emphasize the idea that the human reasoning
could approximate the unlimited uncertainty and contribute to the objectivity in the
modelling of the natural processes. We belief that following this way, the physical
extents of the process should stay proportional to the finial model complexity and
preserve a designed and predicted accuracy for the natural processes. As a
consequence, and conclusion of the above discussion, if there is no ambiguity
present in the decision-making, then the FL approach is unnecessary and we should
rely on the tautology. However, if there is a doubt in isolating of our model from the
unexpected and non-defined influences, then there is ambiguity present in the
decision-making.

This type of the many valued logics and so-based inference rule has been emerging
in the work of Zadeh [114,115] and is called the compositional rule of inference.
Preserving the causality in the decision-making, also characteristic for human
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reasoning, the rules (3.13) in FL become the generalized inference where the
antecedents contain a conditional proposition with the fuzzy concepts:

antencendent 1: If uis A then yis®

antencendent 2: uis A4

generalized modus ponens -
consequence: y is B

(3.14)
antencendent 1: If uis A then yis®

antencendent 2: y is B'

generalized modus tollens -
consequence : uis A

Differently than in (3.13), 4, 2, B and®' are fuzzy concepts represented by the
fuzzy sets in the universes of discourse I/, I/, V and ¥ respectively. In (3.14) u and y
denote the names of objects. There are different fuzzy reasoning concepts in the

generalized rules (3.14). The comprehensive discussion on different types of fuzzy
reasoning can be found in [114].

Generally, FL based modelling consists of four principal elements:

» Fuzzification interface, Fuzzifier

= Fuzzy inference engine

= Fuzzy rule base, including linguistic variables and connectives
» Defuzzification interface, Defuzzifier.

Crisp ¢ () € R Linguistic variables
» Fuzzifier |«@=|Linguistic connectives [=§p»| Defuzzifier
Fuzzy rule base

v

Fuzzy

: —| interference -
Fuzzy sets in u € [ engine Fuzzy setsiny € Y

Crisp
y(t|®) € R

v

A

Fig. 3.1 MISO structure of a FL based model

3.2.1.1 Fuzzification

Figure 3.1 presents the MISO structure of the general FL-based model; we can see all
fuzzy constructive elements in the processing flow, from the crisp input regression
vector @(r) to the crisp output y(z,0). Thin arrows represent the computation and
thick ones the information flow.

Our regressors in the regression vector will be given the linguistic names presented
by vector u from the fuzzy set, subsequently forming the “Fuzzy rule base”, Figure
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3.1. Differently than a pure membership, the fuzzy set members have a weight of
their membership on the span from completely “being a member” to not being a
member in a range [1,0].

***Definition 3.2**[115] (Fuzzy set) If u is an element in the universe of discourse U,
then a fuzzy set A in U is the set of ordered pairs

A ={(u,u,(w):uely, 3.15)

where u,(u) is a membership function carrying an element from [/ into membership
value between [0,1], also called a degree of membership.

The process of associating the regressors to the linguistic names #, and mapping to
the fuzzy set as stated in Definition 3.2, is called the fuzzification (Figure 3.1). The
mapping is derived by employing the membership functions that can be arbitrarily
defined by the designer of a model. Even the membership function (MF) is generally
any function associating the value in closed set [0,1], their selection is driven by the
final modelling objectives and has the influential impact on the model accuracy and
the final control stability. As this part of the fuzzy logic is related to the vagueness,
here we find heuristic fuzziness, certainly based on the experience or intuition. By
the experience, we consider a previously applied pragmatic mathematical
knowledge and the probabilistic theory. Consequently, the certain grouping of the
MFs is established, and that will be inherited from [115] and the references therein.
The important characteristics of the MFs are their convexity and shape, which are
then set into three distinctive groups:

* Network-classic MF
This group has to be given special attention because of its smoothness that
will be used in this work to achieve a smooth transformation from
analytically recognized HS to a more natural continuous. The sigmoidal and
Gaussian functions are members of this class

MFsig(u,B,y) = Uy

2
A5
MFgauss(u,B,y) — u,=e 2P

The smoothness of those functions certainly contributes to the popularity in
the fuzzy modelling and their group name is associated with more complex
and networked identification structures.

» Zadeh-formed MF
The name is given referring to the Zadeh, who is recognized as the author
originally suggesting this formulation of MFs. Yield, the group of MFs that
consists of Z-, §—-, and II- functions:
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( 1 usvy,
2
1_2(”—)’1) y1<us)/1+}/2
_ V2=V 2
U-y, YitY2

2] ——= —=<us<y
(Yz —7’1) 2 ?

0 u>y,

MFs(u,y,,y,) = uy =1-MFz(uy,.y,)

MFs(u,y,.y,) U<y,

MFr(u,y,,75,Y35Y4) = Uy = 1 Yy <USY,
MFz(u,y5,y4) u=>ys

= Piecewise linear MF
Considering the name of the group, these functions are constructed from
the piecewise lines forming the open left, the open right, the triangular
and the trapezoidal functions of parameters (y, <=y, =y; <7,):

MFol(u,y,,y,) — U, =max min( ra U ,1),0
Y2 ="
[ U=
MFor(u,y,.y,) — U, =max|min| 11,0
Y2 ="
MFtri(u,y,,v,.Y3) — U, =max min(u,h—_u),O
Yo=Y1 Va—"2

MFtrap(uy,y,y5ys) — MW, =max min( u-y, 1, Vq—U ),0)
V2=V Va—V3

If we recall the general identification theory (Section 3.1), we see the close relation
of MFs to the basis functions with their distinctive parameters f; and y;. While the
first group of MFs is more convenient for identification and modelling, the last two
are certainly representative of the wider and classical group of Fuzzy Control MFs.
The fuzzification system becomes easily massive with the involvement of the
multiple regressors and the adequate multiple Fuzzy Sets. Accordingly, the
expression (3.15) evolves in

A =G, @) €U} . (3.16)
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In the expression (3.16), the new indices i=1,...,r correspond to the span of
regressors in the regression vector @(z). Every linguistic variable u; associated with

the degree of membership uA.j(ui), in the fuzzy set Aij, could have a different
1

number of the fuzzy sets j =1,...,/ in the universes of discourse [/;. All universes of
discourses for every particular fuzzy input are subsets of a general input universe of
discourse [/,,...,lJ, C IJ. Because of different physical values and a different scaling,
the number of fuzzy sets [/ can differ related to the particular linguistic variable, and
it is a function /(7). Similarly, as the regressor is given a linguistic name, the fuzzy
sets are given adjectives.

For the example, if we ‘code’ the antecedent of a measured current i, (z) by the
variable INDUCTOR CURRENT-1’ then the fuzzy sets could be assigned by adjectives
in the universe [/,

{All —'LOW', A = MODERATE', A,* =‘HIGH'} cu,

In the above example, we defined /(1) = 3.

Therefore, in (3.16) the fuzzification is simplified by an assumption that we have the
maximum certainty that the measured variable takes only one exact value u,. That
way, the linguistic variables are not the fuzzy projection of inputs, as is generally the
case, but they are defined by the fuzzy sets

Loan 3.17
%4 210 otherwise (3.17)

and the process of fuzzification is called singleton fuzzification. Bearing in mind to
present the core fuzzy logic projection and its clarity, in the following we continue
with that assumption.

3.2.1.2 Fuzzy Inference and Fuzzy Rule Base

Once the fuzzification is completed, the next step in fuzzy computation is the Fuzzy
Inference. Now, we can recall the expressions (3.14) and take a simplification of the
generalized modus ponens to the modus ponens by an equalizing 4'= 4, ®' =®. This
type of fuzzy inference we can find in most of the FL examples, thus

IF premise THEN consequence . (3.18)

From a simple inference (3.18) the fuzzy inference engine is building the rule base
considering the previous fuzzification:
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Riyy IF (uyis A') and (uy is A,') and ...and (u, is A,") THEN (y is By, ;)

Ris o IF (uis A') and (uy is A,") and ...and (u, is A,”) THEN (yis B, )

Rin.. IF (uis A) and (u, is A,”) and ...and (u, is A,") THEN (yis By, )

: : (3.19)
Rp1 IF (u is A") and (u, is A,) and ...and (u, is A,") THEN (yis B, )

R IF (u is A") and (u, is A,) and ...and (u, is A,>) THEN (yis B, )

Ryt IF (u is A") and (u, is A,") and ..and (u, is A" ) THEN (yisB, , )

As is transparent from the rule base (3.19), our premise is built from all possible
combinations of the statements related to the number of regressors or the linguistic
names and their associated numbers of MFs [, =[(1),l, = [(2),...,I.. Also, we see that
every premise is associated with the crisp output y. As we have presented the MISO
structure, the output is a member of the output universe of discourse ¥, and each
regressor implies a different fuzzy subset in that universe. A degree of membership
of output crisp value, throughout the fuzzification, as equally as inputs, is defined by
the MF that yields W, €[0.1], for the fuzzy linguistic output adjectives B,,B,,...,B,.

Conclusively, the fuzzy rule in the MISO structure is a mapping defined by the MFs
from the input universe of discourse to the output universe of discourse

Moy (W, Y5 ) = Mgy X Py XX Uy By (gt 00,,y5) (3.20)

inthe space U, x I, x ...x U, x V.
Complexity of so constructed inference is rapidly becoming a huge computing
problem. The number of rules in the rule base can be easily calculated by

R = ]L[zi . (3.21)
i=1

[t exponentially increases with each additional input in the case of MISO structure
and by the fact that every input has an equal number of MFs. The problem becomes
worse in MIMO structures, where we can expect R- dim(y) number of the rules in
the rule base, or in the case wherein (3.16) or (3.19) inputs are not the singleton
fuzzified, u = ¢(t). The latter is usually used to express the uncertainty in the
measuring process. If our fuzzification is not the singleton, the projection of fuzzy
inputs to fuzzy outputs (3.20) yields a more involved expression

g,  (v)=proj(uy@) AND uy g ,y,7) = sup (uz@)*uy p @) - (3.22)

uell " ucsll”

The expression (3.22) is known as a sup-star composition. It yields the final output as
the projection of measured and fuzzified inputs, associated with their fuzzy set in
one degree of membership u @)=y, (ul)*u/32 (uy)%..% u; (u,), to output degree of

membership ug  (y,).
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Apart from using the singleton fuzzification, the physical knowledge of the system to
be identified could significantly decrease the total number of rules, and in some
points also diminish the unnecessary logic that each has every premise term. The
simplification goes in the direction of finding a special MF that is unity over the
entire universe of discourse. Instead of straightening the FL complexity, we
decompose the physical problem and use FL only where the physical vagueness is
present.

In the presented rule base (3.19), we have selected just one example of the fuzzy
connectives or the conjunctions and, but in general there is a wide range of
possibilities. For a better clarity, we will express the most dominant fuzzy logic

connectives and operators over the fuzzy sets Aij for i=1.2,..,r and j=1.2,.,0(i) in
the inference engine:

» Fuzzy Complement
Complement of a Fuzzy Set A,' with a membership function w1 () has a
l

membership function (1 - [ (u,))
1

= Fuzzy Intersection (AND)
The intersection of fuzzy sets A,' and A7 defined on the universe of
discourse [/}, is a fuzzy set denoted by A,'NA,?, with a membership
function:

1. Minimum: Myt a2 =min{uAi1(ui),uAi2(ui):uiEMl}

2. Algebraic Product: Mylna2 ={MAi1(ui)- MAiz(ui):ui el
= Fuzzy Union (OR)

1. Maximum: Mytua? =max{uAi1(ui),uAi2(ui):uiEMl}

2. Algebraic Sum:

Hy

dua2 T {MAI.I (u;) + M2 (u;) = My (ut;)- M2 (u;) 1 u; € Mi}
also called the “triangular co-norm” and given by symbol ®. The symbol
is also generally used for the fuzzy union.
= Fuzzy Cartesian Product
That generally represents the and operator in (3.19), and quantifies the
operations between many fuzzy sets of the universe of discourse

W,,...,00, C . The result is a fuzzy set being defined by fuzzy function

1] .
MAixApx. xAy (U Upseesy) = Uy, (u;) x MAQ(”Z) XX Uy, (u,) for A, = _UlAlj-
Jj=

3.2.1.3 Defuzzification

Knowing the above FL inside the fuzzy engine can easily demonstrate all diversities
in the Fuzzy Logic Identifiers. In looking for a final crisp output value y(7,0) &€/, as
the result of the projection of fuzzy sets from the input universes of discourses to the
output universe of discourse, in MISO structure (3.20), (3.22), we have to devise a
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type of aggregation of the generated fuzzy sets into the unique form. This process is
called defuzzification.

There are different types of defuzzification techniques looking from the side of the
inferred fuzzy sets by two different general inference approaches. First, we build the
inference engine on the way to compute the “implied fuzzy set” of each particular
rule n

up (i) =y @) g, (y5). (3.23)
Second, the inference engine computes the overall ‘implied fuzzy set’ for all rules and
aggregates it into the overall output degree of membership

w(yo) = up (3 )@y (v)D..0u, (37). (3.24)

Defuzzification referring the rule implied fuzzy set could be characterized as the
Centre of Gravity (COG) or the Centre-average.

***Definition 3.3** [36] If the crisp output y(t,8 ) €[ is computed by equation

e, wy (v )dy
3(1,0) =" , (3.25)

:R
2w (v )dy
n=1

where It denotes a number of rules in the rule base, c, is the centre of area of the

membership function of B,, associated with the implied fuzzy set l}n for the nt" rule,
and f, u; (y;)dy denotes the area under wu, (y,), then this computation is called the
B n n

Centre of Gravity Defuzzification.

***Definition 3.4** [36] If the crisp output (1,0 ) E [ is computed by equation

R
e, sup, {u, (v)}
Vl:] n

R

¥(t,0)= (3.26)

Y sup,{u; ()}

where R denotes the number of rules in the rule base, c, is the centre of area of the

membership function of B, associated with the implied fuzzy set l}n for the n" rule
and supy{ul} (v,)}denotes the ‘supremum’ meaning the highest value {M,; (o)},
n n

then this computation is called the Centre-average Defuzzification.

We see that in both types of defuzzifications, special attention has to be given to the

construction of the fuzzy systems to avoid 0 in the denominators of (3.25) and
R’

R
(3.26). Thus, D [, u; (i )dy =0 or sup {u, (,)}=0.
n n=1 n

n=1
Other than the abovementioned, once the defuzzification is rendered by using the
overall implied fuzzy set, the following technique of defuzzifications is known:
» Max criterion
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This way the y(z,8) €[] is computed as )A)(t,G)E{argsup{ué(y;)}}, where
y

it takes the maximum certainty value u, (y;) for n=1,..., It from (3.24).

= Mean of Maximum
[t can be considered as the upgrade of the Max criterion and computed as
. Jryug (v )dy
¥(t,0) fouy o)y
To derive this defuzzification, it is necessary to form a new output
membership function B, thathas a degree of membership defined by

Ab"é (y’.) = é\.max
My, () = {O otherwise
Now the ¢, is a supremum of the membership function B over the

universe of discourse V. It is anticipated that in equation (3.24) we have
more than one supremum, and it should be devised a mean value.

= C(Centre of area
Analogically to the latter defuzzification technique, from a side of the
overall implied fuzzy set, the centre of area is computed as

cws (v, )d
me):fyy up () y,
where u(y;) is the degree of membership from (3.24).

Except that the defuzzification methods computed from an aspect of the overall
output fuzzy set suffer the same complexity (the denominator ill condition) as those
defined by (3.25) and (3.26), its complexity is elevated by the construction of the

inference engine that provide the overall fuzzy set B from (3.24). That makes these
defuzzifications rarely used in practice. Certainly, the COG and Centre-average
methods are the most dominant.

As mentioned, the complexity of a FL can exponentially develop by the selection of
rules in the rule base (3.19), but equally influenced with the selection of the FL
conjunctions, fuzzification of inputs and outputs and finally with the defuzzification.
Significantly, over the past twenty years, some of the FL structures have been given
the broad attention from the engineering and the academic societies. For the
example, the Mandami [116] and Takagi-Sugeno (T-S) [21] FL structures, observed
from the identification point of view the model structures, are typical
representatives. There is a twofold reason for their popularity that brought those
two methods to the level of the basic FL perception of the wider community. The
given attention led to the integration into the MATLAB platform [29] as a
standardized fuzzy logic control framework. First, they are a simple heuristic
reasoning strategy that is easy to grasp in modus ponens implications. Second, the
mathematical expression (arithmetic) of the crisp output values is compact and
simple to compute by the microprocessors.

Further on, the simplification of the FL used here is based on three different levels:



87

Identification of SAS, approaches to smoothing discontinuity

= Singleton fuzzifications of inputs and outputs,
= Algebraic product in the fuzzy premise,
= Centre-average defuzzification.
The mathematical expression of the crisp outputs then evolves in

St (@(D))
Doty (@)

¥(t,0)= (3.27)

Trivially to prove, equation (3.27) does represent a simplified Mandami and T-S
reasoning. The difference in the latter involves a mathematical function instead of
c¢,, which in the former denotes the pure centre maximum real value of the output.
The singleton output fuzzification and the algebraic product of the nt" rule premise
simplifies the equation (3.23) to My (y;)=c," My, (u). Additionally, the singleton

input fuzzification yields Uy (y;)=c, M (@(1)).

T . | (o
o) o—tf — i

S M ~/
S ) e.® ¥, ) )

************************

INPUT LAYER i RULE LAYER 3 RULE COMBINATION LAYER : OUTPUT LAYER

Fig. 3.2 Fuzzy model structure (3.27) suitable for identification
purposes

We see that the output singleton fuzzification of MISO systems gives only the centre
and one consequence of the output fuzzy MF, which is in the sequel scaled and
assigned as c,,. Differently, in the T-S fuzzy model structure, the output presents the
mathematical model that is a unique consequence of the nt" rule premise. If we now
recall a defuzzification (3.26), the supremum of the set of degrees of the
membership for each specific rule, in singleton output fuzzification, is just ;i (u)

the degree of fulfilment of c,. In Figure 3.2, we pose the identification model
structure of (3.27), considering the above simplifications. Centre singletons are
expressed in a sense of different local models y, forn =1,..R.
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Using the FL for the identification purposes projects a different light on fuzzy logic in
general. Particular attention has to be given to the selection of MFs. The
identification suitable MFs are those from the Network-classic group or the bell-
shaped functions. Those functions are from one side, preserving the system’s
smoothness, but also guarding the computation process from the ill conditions in
(3.25) and (3.26). The former is not a problem when the FL is used in the Fuzzy
Logic Controllers (FLC). The strength of the FL approximation is exemplified on the
FLC, starting with the simple examples and later progressing to the more
complicated one. For example, in the work of Buckley [117,118], it is proven for a
modified T-S modelling strategy, in which the consequent functions are also the
polynomials and not only the linear functions, including the matching of the input
value with the rule as an upgrade to the centre-average defuzzification. Later, in the
work of Castro [34], it was proved that FLCs are capable to approximate any real
continuous functions on a compact set to arbitrary accuracy. The class of the fuzzy
identifier or in that case the FLC structure was defined by:

1. Gaussian membership functions

2. Product as the fuzzy conjunction

3. Product as the fuzzy implication

4. Centre of area defuzzification.

Further, in the same work, the proofs continued on the wider classes, including:

1. Trapezoidal and Triangular MFs among the others

2. Fuzzy conjunction modelled by and arbitrary T-norm

3. Fuzzy implications only need to satisfy a weak property (R-
implications and T-norms satisfy it)

4. Defuzzification methods only need to satisfy weak
conditions ((3.25) and (3.26))

3.3 Fuzzy identification of SAS, the redefined approaches

Referring to the statements in the introduction of this chapter, we base the new
methodology in the fuzzy identification of SAS on two distinctively constructed
approaches. Both are rendered from a control point of view. First, looking from the
side of the system robustness, it is a way to identify a system global space of the
stable points or equilibriums. Second, that is a more comprehensive methodology
that has to include the dynamics of the system in the global sense. The latter we will
call the quantitative/qualitative property of the natural system to control, while the
former is the quantitative system property. As the modern control of the nonlinear
dynamical systems is widening the objectives, we found it crucial to redefine a
standard and pragmatic approaches in the modelling of SAS.

3.3.1 Fuzzy static model of a DC-DC boost converter
Previously emphasized distinctive problems of the analytical approaches in the

modelling of a DC-DC boost converter, as an example of SAS, will be considered and
a more objective modelling approach that will overcome the uncertainties by FL will
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be built. If we recall the reachability set (Definition 2.10) in HS, then we can
recognize the similarity with the idea of constructing the space of feasible and
realistic steady states of the modelled systems. In this thesis, with the example of
SAS, the control technique is a genuine part of the system, and it cannot be simply
decomposed. The continuous modes of the HS cannot exist by themselves, but rather
they should coexist in combination with others in the perfectly defined and fixed
time base. The control pulse that is driving the transistor has its natural time
constraint d, =(1-d)k for d€[0,1] (duty cycle), where O=<k <1. The duty cycle
d,€]0,1) is scaled to suite the physical sense of the range that guaranties the
system's functionality. In Subsection 2.3.1, the meaning is explained: it controls the
voltage conversion in the electrical energy transfer from the source to the consumer.
The top duty cycle border 1 should not be maintained, as it causes a destruction of
the inductance and the semiconductors. If the mentioned borders are not violated,
the specific electronic circuit topology will be exchanged together with the
associated HS continuous modes. That sequence of modes is recurrent by the time
base 7. So too, the duty cycle is a scalar that defines the transistor’s “on state” in a
time d,T.

In order to achieve a more objective modelling, and more accurate in physical cases,
our modelling complexity will be decomposed by a physical knowledge of the
system. Differently than in the analytic approaches earlier, we will look for a
quantitative system property in the normed space of the system states that will give
us the energy information at a glance, instead of deriving it from the dynamical
system’s model. It seems to be a logical way for the complexity decomposition from
two points of view. First, the selected system is a representative of PEC, so the
energy-directed discussion is not unexpected. Second, and looking from a side of the
law of the conservation of energy, it provides the transformation of a HS to the
nonlinear dynamical and smooth system. If we observe from a side of the fixed time
period the energy is a continuous function of time. In the case of the DC-DC boost
converter it will be a switching period 7. The process of measuring of the states and
system parameters will transfer the process to the normed space. In the simulations,
it will be rendered by the numerical integration methods, and in the realistic
environment by the measuring devices. The emphasizing an idea of modelling the
HS by defining the system’s continuous counterpart does not necessarily lead to the
inaccurate modelling [2] and the coarse approach, but conversely defines a strong
base for a complexity reduction and stable control methodology. The accuracy of
model constructed in this manner has to be at least equal to one exemplified in the
more accurate analytic approaches, Section 2.3.

The main physical meaning of the selected example is to transfer the energy from
the source to the consumer and at the same time maintaining the voltage ratio
between them (Figure 2.11). The system’s equilibrium is achieved once the energy
demand from the consumer is delivered preserving the output DC voltage and the
constant duty cycle. Generally, the construction of the electrical circuit is built
(Figure 2.12) to provide the certain energy storage, which has to compensate for a
short time load demand deviation. It is fulfilled by the implementation of the output
capacitor. At one operating point, if there is no change in the system parameters,
after the arbitrary time of transition, while the duty cycle is constant, the process
has achieved equilibrium. This means that the steady duty cycle will provide a
certain and steady voltage output of the consumer and the steady periodic energy
flow in-between the input and output ports of a DC-DC converter, Figure 2.11.
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Measurements of an input port voltage and current, and the output port voltage and
current will prove an energy balance if we neglect the energy losses. Even in the
physical cases in which the losses are present, in the identification methodology, it
will be measured and recognized as the port energy imbalance. Driven by the final
control technique point of view, our task is to identify the mapping of the duty cycle
to the previously mentioned measured energy balance or imbalance.

From our smoothing operations, the measured inputs and outputs are now more in
harmony with the final goal of controlling a DC output signal, which is not a pure DC
signal, but it is a combination of a DC signal and the AC ripple (Subsection 2.3.1). The
integration of measured signals in the 7, period will give a proper signal
contribution to the periodic energy balance and our DC output signal assumption. In
practice, the measured signals will be RMS values and the control algorithm will
control the output voltage RMS value. It is straightforward to see that, generally in
this example, we have two possible feedback control approaches. One, which is a
control of the output voltage trajectory, or the other more simplified, that controls
the output normed value. The latter and the one taken in our work is more
according to the fundamental assumption that the task is to control an output DC
signal. These statements are leading to the mathematical transformation of the
original and the analytic state space model to the new Lebesgue 2 normed state
space. In such a transformed state space, we are deriving the new space of a DC-DC
boost converter equilibriums.

A new pseudo-norm | .|| on the vector space (V,].|)

1
1 _
Iz]l,» =;(f|1|”dt)p , ZEL (3.28)

will be derived from the simulation process of the hybrid mathematical model and a
numerical integration based on the explicit Runge-Kutta (4,5) method and
developed in the “ode45(Dormand-Prince)” MATLAB [29] for p =2.

We have to recall equations (2.53), (2.66) and Table 2.2 to devise the mathematical
expression

Az()+BE(t) kTy<t<kTg+t,
2(1) =1 AZ() + BLE(1) KkTg+1); <t<kTg+1, +1,;
Az()+ByE(t) KTg+1t, +ty, <t <(k+DTs
k=0,1..00 , (3.29)

as the complete mathematical model of the hybrid automaton from Figure 2.13.
Hence, the continuous equations (3.29) for the state variables z(r) =[v.(t) i, ()]
provide the basic blocks in the SIMULINK [29] that will be connected with the
discrete events. The final hybrid simulation model is equivalent to the one presented
in Figure 2.3, but with the major difference that it will not be executed in the real-
time span. This has to give us sufficient information about the processing complexity
if that is to be our final model for the predictive control solution, as it is presented in
Subsections 2.1.4 and 2.3.3. Subsequently, in the offline regime, we have sufficient
time to execute the simulation with the as short as possible basic time of execution
(Le-06s) and integration, which gives the highest grade of accuracy of the switching
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events. Accordingly, that is our closest estimate of the real events in the DC-DC boost
converter.

The space transformation filters out the high-frequency nonlinearities or the high-
scaled oscillations. In the continuation, a pseudo norm space (V, ||) will be further

transformed to the pseudo-Banach subspace of an augmented dimension.
The simulation process Q of the hybrid system (3.29) will expand the origin three-
dimensional space including time to the six-dimensional space Q: [/ —A°. In the
Figure 3.3 we present the simulation model constructed to allow the space
transformation of the original simulation model from the Figure 2.18. That is
possible by knowing that our physical system is state measurable. The extra
measured process parameters are E as the input voltage source to the converter, the
output current i,, the control variable to process d, =(1-d)0.66 =1t,,/T, for d €[0,]1]
scaled to suite to the Pulse Width Modulator (PWM). The measurement of the i,
and together with the controlled voltage value will reconstruct the converter’s load
in a physical environment. Less demanding is a measurement of the load in
simulations, as shown in Figure 3.3.

From the simulations, we know that the process is open-loop stable. Even when
transformed, the system still preserves its nonlinear dynamical characteristics. With
the intention to predict the stable control parameter d,, our work will concentrate

u’

on an examination of the stable steady state of a DC-DC boost converter.
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A mapping Q derived the trajectories over the six-dimensional pseudo-Banach
space and opens the ability for an orthogonal slicing of the new vector space (V°, ||)
.||)C(V6, ||) Geometrically, e, ||) is a smooth
manifold M,, which consists of the targeted six-dimensional tangent space T;, M,.

to the tangent vector space (V16,

The steady and stable state of the converter is assigned as X, € M,. The vector of

d

ol el a| o
‘ad,
0

R , ,— is a natural base of
di,|. "dvc|. "IE|. "oR
0 20 x0 X0

dat

. 0
transformation 7=1—
B

0
I;yM,, and T, M, =T°Ml|,e0 (o-composition). Throughout the tangent space T; M,

X

we pull an affine surface orthogonally on the first coordinate of T;, M, kernel. The
thus-obtained surface .S consists of the system steady states. The trajectories driven
from the simulation process Q intersect the surface .S at particular points Xx,; for
i =1,...,n, and n is the number of the final and time-filtered test samples. Because n
is a limited number n <o, our surface S is not dense and it applies for an
interpolation. Our transformed original space is now based on affine functions, and
by the employment of the identification method; we construct the modelled surface
with its minimal error to the representatives x,; of the physical surface.

The main task of the following work is the mathematical definition of a mapping
w(Vf) ' —F*>'and the construction of the explicit fuzzy model of the control
signal d,, which guarantees a true and predicted system steady state as a

—_ —_ T v T
consequence of the vector of a measured and || .||zvalues X = [vc i ig E] .

The objectively accepted results of the mapping identification could be reached only
with the thoughtful selection of the measured process data. This task, by
examination of the quantitative system dynamical behaviour, has to exclude always-
possible preliminary conclusions that mostly lead to severe model/process errors.
In order to support that approach, in this paper we involve the process excitation
only with a random pattern. The vector of the process changes

E(kTw)=[E(kTw) R(kTw)] originated by the MATLAB white noise and random
function together with the excitation duty cycle form the overall input vector
u(kT),) =[du(kTw) IE(kTw)]. Figure 3.4 expresses the simulation principle in which

the discrete time k7T, is selected to preserve the steady-state measurement,
afterwards resulting in the database and forming the identification training data set.

()=A_(t)z(t) + B_(HE(t
Wk T.) 2(H)=A,(Vz(t) + B (DE(1) HO+DT )
" m= {123} inatime T, [—— 1>
Hybrid
Mathematical Model

Fig. 3.4 Mathematical model simulation principle of construction the
system-scanned database
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Based on the heuristic assumption that there exists a deterministic and unique
mapping in the pseudo Banach space (V°, ||) we form the fuzzy identified model

F(V16) : B>~ —[*" in which the steady state holds the expression for the duty cycle

d, =F(X) . (3.30)

The input vector to the fuzzy mapping will be x =[\70 i, E R]T, partly simplified
from an Xx with the assumption that v, =v,and the implementation of

R =‘:—", ir >0. Generally, mapping is a function of the input vector X = x (in the
IR

following assigned as x for reasons of simplicity) defined by its parameters and

hence

d,=y=r(x16). (3.31)

In equation (3.31) the 8 ={a,c} denotes the set of fuzzy model parameters, and in
our example

a;p Gp 43 41y 45
a- Qy; Gy Upz Gyg Ups
. . ] . . (3.32)
Apy Adpp Gp3 Gpy dps
c= [c] c, - cb]

The constant b is a number of rules in the fuzzy rule base.
For all systems [36] if there is a function

¢ X T

that X CHA'.Y CH then with the process of identification we approximate the
mapping g in the way that

8(x) = f(x]) +e(x) . (3.33)

The approximation f(x|@) of a physical system was derived from examinations of
the training data set

G={(x"d",..x"d")ICXxY

constructed by M data pairs of the steady-state representatives, from a complete
data set gained in the simulation Q and corresponding to (3.30).

In this study, the selected C-means clustering method will iteratively minimize the
distance
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1-8 3 wrle | 331

=1j=1

from a bonding data representative centre vector c,.c,....c, in vector space

6 6
VAR B =l(a
clustering will be performed on M data pairs of G.

), of our predefined universes of discourses. The process of

The parameter p is the so-called “fuzziness factor” [36], which determines the factor
of overlap in-between clusters and u the grade of membership.

Accordingly in this study the selected fuzzy model is the Takagi-Sugeno MISO model,
which consists of the rule base, presented with an equation

it H’ then g;(x)
where H’denotes the fuzzy set

= {(x,qu (x)) :fo(1 X ... X 5(”}

and

for j=12,..b.
The complete fuzzy function is given by

b
E (]0+a]]x +. +aj4x4),uH,(x)

>, ()

As the clustering method does not tune the complete fuzzy parameters 0 but only c,
consequence function parameters a will be defined by the least-squares method

f(x6) = (3.35)

a,=X'W’X)"' X'W?y
T

1 - 1

x] ven xM

W, = (diag( >ty )’

X= Y =[d,ody] (3.36)

and again, in order to minimize the cost function

M T )2
2 ;) ( wi _[l’xi ]aj (3.37)
j=12,..b

Accordingly, all the identification processes can be briefly presented in the following
algorithm steps:
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1. Simulation of the physical system (hybrid simulation model) excited with
u=[d, &

2. Forming of M data pairs of the training data set G

3. Definition of u; the new grades of membership (p=2) by the C-means

clustering
5 171
— i=1...M

YT e (3.38)

j=1L..,b c¢= [c,,cz,...,cb] initialy selected

4. Definition of c; the new centres by the C-means clustering

. 2
lglxi‘uij

c = —

R 3.39

21M1j2 ( )

j=1L..b

5. Definition of a; the consequence parameters by the weighted least-squares
method

6. Defuzzification (3.35) by implementation of the grade function
i

b ‘x —Cj
u ()= 2
HJ m=1

e -c,|

j=1L.,b c¢= [c,,cZ,...,cb] ¢ —means tuned

In our simulation example Figure 3.3, the constructed fuzzy model is the mapping,
which transfers a converter’s parameters from the input universes of discourse

o

[ov, 700V ]
i, =x,€X, =[0A,1030A]
E=x,€X, =[10V,16V]

—to_x,€X, =[109,32Q]
IR

to the output universe of discourse or simply a duty cycle

d,=y €Y =[15%,98.5%]=[0.65,001].

u

The fuzzy rule base consists of b = 33 rules, and the fuzzy parameters 8 ={a,c} were
reconstructed and based on the knowledge gained by M =635 pairs of G.

It can be now presented geometrically as an invariant foliation in the tangent
subspace T, M,. For an understandable graphical presentation, it is drawn in three-

dimensional space formed by the original and appreciated dependence of a duty
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cycle d, from the coil current i; and the output voltage v, while the remaining
dimensions are fixed in the x, points of their constrained universes. Figure 3.5
expresses the sliding effect in the three-dimensional space of the original nonlinear
dynamical system in its equilibriums, influenced by a source voltage change. In a
similar way, Figure 3.6 shows the sliding effect with a load change.

3.3.2 Fuzzy static model of a DC-DC boost converter evaluation

In order to evaluate the fuzzy modelling and achieved results, the evaluation test
will be done in such a way that the physical system or the hybrid simulation model
in Figure 2.18 will be excited with a ramping duty cycle, from 0% to 100%, varying
as discrete input in the time T, while the source voltage and the load resistance
are fixed. The received data, as the testing data set, will now be the input data to the
explicit fuzzy model. The resulting outputs from the explicit model testing (3.35)
will then be back-compared with the original excitation duty cycle of the physical
model.

Approximation error from the explained test

e, =d d (3.40)

fuzzyn — “n
for n™ the data equilibrium set is further evaluated by comparison with the
analytical results from [7] and the results based on the average switched method.

fuzzymedel of DC converter

0.7 —

0.6+

0.5+

0.4 —

dutyeycle

0.3

0.2 —

01—

BO

40

currant|[A] wvaltaga[V]

Fig. 3.5 Explicit Fuzzy Model invariant foliation for step changes of
E=10, 13, 16 V (source voltage) and R=12.5Q
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fuzzymodel of DC converter

07—

06

0.1 -

7D

currani[A] voltagelV]

Fig. 3.6 Explicit Fuzzy Model invariant foliation for step changes of
load R=12.5, 20,30 Q and E=16V

Figure 3.7 is a graphical presentation of the fuzzy model testing results, compared
with the real excitation duty cycle. The graph is drawn for one combination of the
fixed load and the source voltage, which means that a similar test can be done for a
different combination of the fixed process parameters.

For the same data in Figure 3.7, a comparison of the results has been made to the
analytically calculated duty cycles on two different ways. One calculation is based on
small signal values and the averaged model in Subsection 2.3.1, and the other is
based on the stroboscopic Poincar map analytically derived in Subsection 2.3.5.
Figure 3.8 shows all the evaluations together. We see that the stroboscopic Poincar
map approximation

1 2E2 T T2
vo(k+l)=a1v0(k)+ﬁdL a' =1- L
v (k)-E C(R+r.) 2C°(R+r1.)
RT?
/3’1=—s (3.41)
2LC(R+71,)
(1-a"Ys—-E)s
dPoin= ﬂlEz

or the averaged system method approximation, developed for the DC-DC boost
converter in this investigation
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(E-s)R+r,)

dlin =
SR

(3.42)

are providing globally less accurate results in the steady-state duty-cycle prediction
than the one resulting from the fuzzy model (3.30), (3.35). If we calculate the
arithmetically averaged error in all three cases:

€ p,in =03592 or 53.61%
e, =00149 or 222%

e =0.0079 or 1.17%.
fuzzy

Comparison of Input Duty Cycle to Physical Model and Explicit Fuzzy Model Identified Duty Cycle
07
I I I I I

—— Physical Model Duty Cycle Input
—a&— Fuzzy Identified Input by Measured Values

0.6

0.5

o
~

03

0.2

Duty Cycle
scaled on range from 95% to 7%

0.1

-
0 \ \ \ \ \
40 50 60

30
n set of measured data [Vc,IL,E,R]

Fig. 3.7 Comparison of ramping duty cycle to Physical Model and
reconstructed duty cycle by Explicit Fuzzy Model, while
constant E=16V and R=12.5Q

Figure 3.8 explains a very inaccurate Poincar stroboscopic map approximation of
the steady-state duty cycle for a complete range of duty cycles. However, if we
transfer a comparison in the limited range of interest [16,50] the VDC of the
reference voltage, or only the DCM converter’s operation, then the results are more
comparable. A stroboscopic map (2.92), (2.94) is derived for the converter DCM and
it is expected to be non-applicable for a complete range of DC-DC converter
operations. The methods driven in this work that are the same as the averaged
model approximation are the global methods and comparable for a quantitative
examination of the physical system. Thus, if we limit the range of interest to that
mentioned, the following results are found:

€ pyiy =00132 or 197%

e, =00199 or 297%

e =0.0065 or 097%.
fuzzy

Now, the results of all the methods are comparable and still the fuzzy model is the
best approximation of the steady-state duty cycle, and it will be used in a duty-cycle
prediction of the control algorithm for the infinity time horizon.
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Comparison of duty cycle approximation methods with Physical model
[ [ [ [

—— Physical model

—o&— Fuzzy approximation

—— Poincare approximation
Linearization approximation

o
>
T

o
@
T

o
=
T

o
w»
T

duty cycle steady state
(scaled for PWM on range from 95.5% to 7.4%)

1=}
T

o
N
T

30 40 50 60
n set of steady state data (Vc,IL,E,R)

Fig. 3.8 Comparison of three methods of approximation with a physical
model steady-state duty cycle while constant E=16V and R=12.5 Q

3.3.3 Fuzzy dynamic model of a DC-DC boost converter

Knowing the encouraging results from the previous subsection in the identification of
the quantitative system’s properties (the global space of the converters steady states),
we will continue with the identification of quantitative and qualitative converter
characteristics. It can be formulated as the identification of the dynamical converter’s
model in the global system’s extents.

Most of the natural processes belong to the group of nonlinear dynamical systems. In
order to design the proper control algorithms, a global knowledge of the system
behaviour is of crucial importance. Differently than above, the following work is
contained in the same reconstructed space, but it concentrates on the transition
system'’s properties between the earlier reconstructed steady states.

DC-DC converters are a good example for which the nonlinear dynamical system
inspires with complexity in the forming of global system knowledge or modelling. The
following work presents the global process modelling known as NARX (Nonlinear
AutoRegressive with eXogenous inputs). Generally, the nonlinear system

X(k+1) = f(x.u)

y(k) = g(xy,u)
is a complex mapping over the vector of transformed statesx E[*and the input
u =d, €[ into the output y €M, which will be identified as a T-S fuzzy model

(3.43)

Ym(k+D) =F(p,) . (3.44)

The Takagi-Sugeno fuzzy model as a global model approximates the nonlinear model
(3.44) as a mapping F of the unknown regression vector g,in a time k7, to the step-
ahead predicted output y, (k+1). All this is possible by assuming that f,g are
mapping over smooth functions consisting of a vector of states x €l in a space H'.
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Concerning our DC-DC converter as a process, the state variables are now RMS-
transformed continuous functions (transformed space, Subsection 3.3.1)x €[’ CH.
The identification of (3.43) is a continuation of the research [30,31,32] based on a
heuristic approach by implementing the fuzzy identification as a Universal
Approximation [34,35]. Equation (3.44) is reconstructed throughout the two grades
of the identification process and hence

Y (ki +1) = Bl (K))8 0, (k)" (3.45)

Referring to all possible nonlinearities presented in Subsection 2.2.2, our example is
analytically descriptive with the arbitrary high grade of accuracy (2.53), (2.66), (3.29)
in its piecewise continuous and linear modes of operation. This physical knowledge of
the specific example will group the identification process in the grey box
identification [30]. This knowledge helps us in the selection of the regression vectors
and those typically consist of measured values in a time 7 < k7.

By experimentally comparing several selections for regression vectors and
minimizing the model/system error thus proposed, the vectors

@, (k) =[v,(k) v,(k-1) i (k) d, (k) 1]

@y(k) =[E(k) v,(k)/ig(k) i (k)] foriz(k)>0 (3.46)

where the indices 1&2 correspond to different grades of identification. The 8, (3.45)
denotes the parameter matrix of the first-grade identification resulting in a set of p
linear models, evolved from the number of rules in the fuzzy rule base and equal to
the number of OPs,

a;; aip Az diyg 45 101,
a a a a a 0
2.1 22 23 24 25 1921
0, =] . : : : A (3-47)
py App Ap3 Apg dps 1 017»1

and ,0,, , for example, is the vector of the model coefficients of the first operating
range identified ARX linear model. In spite of the ability to use an averaged
mathematical model [3,58,59] in certain operating points of the DC-DC converter
(Subsection 2.3.1), which would be derived by the perturbation method at that point,
we propose a linear quadratic problem and a least-squares identification method
around the selected point. This approach gives a predicted and better variance of the
model error, especially by observing from applicability aspects on physical models.
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lERY

>
d., Process
i Hybrid >
Model R
>
E

Fig. 3.9 Fuzzy ldentification Model for DC-DC boost converter

Thus, linear models around the operating points will be identified by the least-
squares method

6, =w'w)y'w'y (3.48)

where W €R**’ is a matrix of measured S training samples of the regression vector
@, components for the operating point n and Y, €R® is for MISO processes the vector
of the step-ahead responses. To gain the training data set (3.48) for a particular
operating point (OP) the physical model is primarily tested in order to experimentally
define the steady-state d,, for the ntr OP (n 6[1,2,..., p]) . This gives us the centre duty
cycle, which is expanded in the excitation function d,,(?) for the n™ OP region that
has to be identified.

The vector of coefficients |6,, are afterwards further tuned in the 2nd grade of
identification and together with ¢, (k) express

Xr_sa(k+ D= Hn,l(pl(k)T (3.49)

the n” Takagi -Sugeno Fuzzy Model consequence function.

The second grade of the identification performed on the identification model in Figure
3.9 builds the nonlinear model structure NARX and mapping (3.44), which is also
called the generalized output error model [31].

The fuzzy rules @' for i=1..p form the rule base of the identification model in
Figure 3.9 and constructed for DC-DC boost converter in example of this work are the
following

2 IF E(k)is ﬂl_/.] AND v (k)/i (k) is ’gz,_fg AND i, (k)is )53‘/.1
THEN y,(k+1)=a,v, (k) +a;,v,(k=1)+ai, (k) +a,,dk) +a;
fori=1,...p and unique set[j,j,.j;1'" if j.j,.J; €{1,2,3}

(3.50)
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where {#£,,#£,,,#£,5} C A, are the membership functions of the input universe of the
discourse for the source input E(k) and, similarly, £, and A, are universes of
discourse for the load and the coil current, respectively, Figure 3.10-3.12.

The process of fuzzification is carried out based on Gaussian membership functions
followed by the product to represent the conjunction in the premise and ending with
the typical centre-average defuzzification. As a product of selected fuzzy construction
the vector of normalized degrees of fulfilment in fuzzy mapping (3.45) is presented by

[0, (@21 00) ® by, (@220 @ iy, (92,0))]
s, (@2 (KD @ g (@,,(00) - @ s (22, (K))|

Blg,(k)) = (3.51)

The vector B(k) ER” has a length equal to the number of rules in the rule base of the
fuzzy model and the symbol ® is the Kronecker product. Furthermore, u, denotes in
general the matrix of the degree of fulfilment. In our case, that is one row vector with
a length equal to the number of membership functions for a particular fuzzy input
variable. Those input variables consist of the supplementary regression vector g,.
Closely, the 1st grade of identification sets the ,60,, (3.48) model parameters that will
be initial parameters for the second grade of identification or fuzzy modelling. Except
matrix 6, that consisted of |0, , and gained by the least squares method, the T-S fuzzy
model additionally consists of the membership function parameters, the centres and
the standard deviation of the Gaussian functions. Altogether, we construct the 6, as a
set of fuzzy model parameters and in our example thus

62 = {01 N C, 0}
€1 Cip Ci3 O O O3

C=|Cy1 Crp Cr3| O=|0y; Opp Oy (3.52)
C3y C3p C33 031 O3, O33

c,o0 RV

where ¢ and o denote the matrixes of the membership function parameters, i is the
size of the regression vector ¢,, j is the maximum number of membership functions
per fuzzy input and

p =dim(,uﬁl)dim(‘uﬂz)dim(u%) =27 equals the number of rules in the fuzzy rule
base. Hence, in equation (3.51) B or the vector of the normalized degrees of
fulfilment [30] can be expressed as B = f(@,,c,0), by knowing that the degrees of
fulfilment u , are vectors of the functions and for a first linguistic variable hence

2 2 2
_1(«p2,1—c1,1) _1(¢2,1—c1,2) _1[@02,1—c1,3)
2\ o1 2\ o1 A s )

He = [e

p

The vector ﬁ as it is a vector of normalized values (3.51); thus, the E/g’,,i =1 by
i=1

taking into consideration that the Gaussian functions are fuzzy membership functions.
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To optimize the selected T-S fuzzy model or to precisely define the parameters in the
second grade of identification, the gradient tuning method was applied. By
minimizing the cost function

J=3

1 i i
200 (@01160) -y’ (353)

over the training set of data {(¢,.@,)".y" } ET the overall parameters of the fuzzy
model 6, will be tuned [36]. The simulation process resulting in the definition of the
training data set I' can be performed after the selection of the excitation input
functions of the duty cycle d, ,(7), the source voltage E,(?) and the resistance R,(?).
First, the b =1 set of simulation input functions is used for the training of the final
construction of the fuzzy model and other sets, mostly for the evaluation process.

3.3.4 Fuzzy dynamic model of a DC-DC boost converter, evaluation of
the modelling based on simulation

The parameters defined in the first grade of identification 8, are not expected to
differ to a large extent by performing the min(J) convex optimization in the second
82

grade of identification. To a much larger extent we expect differing of heuristically
chosen initial values of ¢ and o. Accordingly, and in order to accomplish the final
fuzzy model by faster convergence, the step sizes related to the membership function
parameters (c,0) are bigger. Figures 3.10-3.12 present the tuned membership
functions of the fuzzy model for the chosen example of a DC-DC boost converter.

In a nonlinear dynamical system identification, the minimum of the convex
programming is just a rough approximation in some of the operating points. Our
approach with two grades of identification, first least squares and second the gradient
method of identification, gives special attention to the selection of the identification
sets of the data in both grades. The validation test results can be seen in Figure 3.13-
3.15.

Membership Functions for "Source"
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E [V] - source voltage

Fig. 3.10 Membership functions for linguistic variable “Source”
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The final equation of the fixed FNARX model gained by the offline identification for
the process of the DC-DC converter in this work is

Yulk+)=a,,v,(k)+ amZkvo(k -+ am3kiL(k)
A4, d, (k) +a
Vv (k) =y(k)—e(k) e(k)—-identification error

s (3.54)

where a,, (k) =1a,, (k) a,,(k) a,;k) a,,(k)a,s(k)] denotes the vector of the model
time-dependent coefficients. Those are defined in each step of the control
a, (k) =B(p,(k))8, that takes care of the model adaptive tracking of the process’
dynamical changes.

Membership Functions for "Load"
1 T T

Degree of Membership
o
o
T

0 / 1 1 ) \\L 1

20 25
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Fig. 3.11 Membership functions for linguistic variable “Load“

Membership Functions for "Coil Current"
1 T T

Degree of Membership

1 1 "
30 40 50 60
iL[A] - Coil Current

«

Fig. 3.12 Membership functions for linguistic variable “Coil Current
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Fig. 3.14 Comparison simulation results combining v, and y,, for the testing set
of data. The input variable to the process and disturbances are selected
to test the complete ranges of the fuzzy universes of discourses and for a
‘load’ even higher to simulate possible natural occasions.
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Fig. 3.15 Histogram of relative error e(k)/y(k) (Fig. 3.9)



106 Doctoral dissertation -Robert Bazdari¢
Approaches to the Fuzzy Model Based Control of Switched Affine Systems

3.3.5 Fuzzy dynamic model of the experimental DC-DC boost converter,
evaluation

Thus, fruitful results rendered by this examination of the simulation model led us in
an experimental evolution of the identification-developed methods on the physical
system, Figure 3.16. The selection of the electrical components in Table 3.1 (7s =333
us) is conducted to achieve a meaningful comparison with the simulation results.

The new and experimental identification training data set {(@,.p))"” ., y"}ET is
constructed by using the same microcontroller and its storage place (Figure 3.16) in

an open-loop regime. A process of convex programming in the minimization of the
cost function min(J) is programmed and executed on a standard laptop. As
82

expected, the identification results are less accurate than those based on an
examination of the simulation model in Figure 3.17. Figure 3.18 presents the
comparison of the measured testing data set and the “1 step ahead prediction” based
on the experimentally identified fuzzy model. As the new methodology is seeking for
a robust solution, so the process of identification is more appealing in the sense of
test-bench preparation. The major part of the identification process of such a robust
system is in the construction of the variable sources capable of sustaining
substantial surges in the current and instabilities caused by that. This problem is
certainly influencing the final model accuracy, but also fortifying the methodology
and its applicability in realistic systems.

Element Code or value
Inductor L 211 uH
Capacitor C 222 uF
Transistor FDB2532 Table 3.1 Constructive
elements of the
- examined and
Diode RURP3020

controlled DC-DC boost
converter Figure 3.16.

Current Shunt Monitor | INA193

True RMS IC AD637

TMS320F2806

Microcontroller 9
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Fig. 3.16 Experimental process for performing of the new identification
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Fig. 3.17 Results of comparison simulation combining v, and yn (the
identified simulation model) for the 53843 testing samples;
SSE =5.93:10° & MSE = 0.1101
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Fig. 3.18 Results of a comparison of the experimental prediction ym,
(the identified converter) and v, as the process output on the
53843 testing samples for the real physical system Figure
3.16 SSE=853-10° & MSE =0.1584

3.3.6 Evaluation of the new dynamic modelling vs. the established methods

Except for the model evaluation carried out with a typical identification framework,
it is not less important to point out the main innovation featured in the new method
vs. the already well-established methods.

The presented “troublesome” identification is primarily bringing more precise
modelling in processes with lower processing capabilities, where the sampling time
is equal to the switching period 7§, and conciliating the control efficiency with its
complexity. Most of the present methods are originally based on averaging
(Subsection 2.3.1) and building the models on the typical involvement of an integer
variable 6,(k) E{O,l} (Subsection 2.3.3) by assuming that the two-circuit topologies

exchange happened instantaneously ¢#=0, but in reality t<¢ for £>0. The
topologies in that time are physically correlated, which brings necessary complexity
in analytical examinations. For a discussion on this topic the reader is referred to
[12,13,27] and Subsections 2.1.5 and 2.3.4.

Presenting the system via typical linear or bilinear state-space presentation is just a
continuation of the well-known averaging method [37]. Accordingly, to make a
meaningful comparison, three differently built models, i.e. the hybrid simulation
model (3.29), the identified fuzzy nonlinear dynamical model (3.54) (in this work),
and the analytically linearized averaged-switched model of the DC-DC boost
converter (Subsection 2.3.1) are simulated and excited by the sinusoidal function
around the OP. Based on the MATLAB [29] ID toolbox, the model responses’ data
gave the expected results. The drift effect related to the gain and the phase margin of
the averaged-switched model is obvious on the sinusoidal excitation in the duty
cycle range of dyop +0.004, while the fuzzy identified model tracks the original
hybrid simulation model with estimated preciseness, as shown in Figure 3.19.
Furthermore, this comparison is carried out in CCM OP, where the standard
analytical approaches [37] based on one integer variable (integer programming)
have comparable precision. The superiority is more obvious in DCM, where the
identified model still preserves the same accuracy, again with the assumption that
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other methods are also based on the fixed switching period equal to the sampling

time.
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Fig. 3.19 Comparison of second-order identified linear models in narrow regions
around the OP, identification vs. analytical averaging

-100

-200 [

-300

Fromd tov
u o

10

— Hybrid Simulation Model
Fuzzy Identified Model
Analytically Linearized Model

!

10’

10°

Frequency (rad/s)

10*



110




111

Chapter IV
Control of SAS based on Fuzzy Modelling

All previous chapters are discussed in accordance with the final objective, an
intelligent and the state-of-the-art controlling methodology capable to cope with the
SAS as the nonlinear dynamical system. Herewith, in this study underlined the
complexity of SAS is decomposed and emphasized to pursue the comprehensive
solution, but yet wider applicability for the systems with the lowest processing
capabilities. Certainly, the Model Predictive Control (MPC) brings the structurally
standardize and comprehensive control, but in the majority of applications it is too
complex and a cost-insensitive solution. Generally, it is rather appropriate for a
larger, slower, and the multivariable systems. Subsequently, and with the mentioned
decomposition, we are rendering the different approach in combination with the
Fuzzy Logic, which has to fulfil all objectives of this thesis. It is designed and based
on the heuristic approach, integrating the standard and widely known MPC as the
methodology and not the unique control technique.

4.1 Model Predictive Control

During the 1970s, the first control methodologies revealing the milestones of
modern Model Predictive Control (MPC) can be recognized. Significantly supported
by developments in technology, including the environmental and profitable
interests, it is recognized as a supervisory control methodology [19]. Pioneering in
the Predictive Control, we can witness this control technology trend in the work of
Richalet [119, 120] and Cutler and Ramaker [121]. Later, it is found in different
references [122-126], all contributing to the same and the main stream of the
model-based control systems, designed and reported for multivariable and robust
systems. The comparative study expressed in [127], as a long horizon predictive
control method, generally focuses the main method’s objectives. Those are
recognized in the system robustness, the solutions for unmodelled dynamics in the
systems with parameter variations, the process noise and varying dead time.
Additionally, the authors have made efforts in supporting the unified approach in
distinguishing it from the well-known linear quadratic control [128]. The same
work gives directions in applying the method to the nonlinear systems. Discussions
about the method’s prediction horizon, indicating the receding horizon principle as
the method’s core tool, appear in [129] and devises the constrained receding
horizon predictive control. Therein is the optimization of the quadratic function over
a costing horizon taken in order to achieve a final and the stabilized linear process.
Furthermore, it suggests the finite-horizon methodology.

The basic principle of the methodology can be found in deriving the mathematical
model of the process, formed to predict the future progress of the system states.
Consequently, the typical representatives of the MPC methods are named regarding
the constructed model. Thus, the generalized predictive control (GPC) emphasizes
the polynomial-based models [130,131] and connects it naturally to the quadratic
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performance index. Similarly, we can mention the Dynamic Matrix Control (DMC(C)
[121], or also the Predictive Function Control (PFC) in the work of Richalet in [132].
During the history of these methods, it was not only the model that was assigning a
specific method’s name, but the chosen performance indexes also had the same role.
In our work, we will concentrate more on the advancing of the MP(C, the way to
support the opinion that the MPC is not a single control technique, but rather a
complex methodology [19]. This statement is a product of the long-term academic
contribution towards the forming of the systematic and structural methodology,
which copes with the most modern control objectives, but also preserves the basic
principles of the control technique. Originally, as a Linear Systems Methodology, the
method was also developed for the nonlinear systems, and continues to improve in
that direction. Our contribution will be given to the control of Hybrid Dynamical
Systems, in general, but focusing on the SAS. The popularity of the method must be
seen throughout the main characteristics:

Mathematical model definition of the dynamical system

Prediction of the system’s state progress regarding a defined model

Preceding horizon principle

Optimization of the control signal in accordance with the predefined

performance index

5. Implementation of the trajectory that will be followed to achieve the final and
stable, controlled value, mostly called the reference model

6. Simplified tuning and integrated natural feed-forward characteristic

7. A structurally designed handling of the system constraints in general.

W

Most of the recognized authors [18,19] will agree that the abovementioned
characteristics of the MPC methods are sufficient in resolving the non-minimum
phase systems, the systems with large time-delay and finally the unstable systems.
Further on, it is an applicable methodology for advanced systems, as it allows a large
number of constraints, which also includes the economic or financial aspects of the
modelled system. As mentioned, the methodology is also applicable to the nonlinear
systems. In the work of Tor A. Johansen [133] we can find the valuable survey on
Nonlinear Model Predictive Control (NMPC) that is associated with the nonlinear
modelling, the nonlinear moving horizon estimation and the nonlinear programming
in order to achieve a complex optimum. Naturally, the MPC has drawbacks, despite
its popularity in academia. Those are excessively more obvious in NMPC. The main
drawbacks are:

1. Complexity and importance of the modelling of dynamical systems that
requires a good physical insight into the problem

2. Complexity of the optimization algorithms, their variable and unpredictable
time of execution

3. Even very successful in handling the unstable systems, widely applicable, the
method has a complex theoretical analysis of stability and robustness.

The indicated drawbacks are the main aspects of criticism and emerging opinion
that the MPC is an adequate methodology for the slow processes. Our objective of
this work is to prove the opposite by rational decomposition of some pragmatic
trends in the modelling and optimization of the control of dynamical systems. MPC
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that is also applicable for the controls of the HS will be our realm of interest, but
performed with the SAS. A great contribution following the equivalent direction can
be found in the work of Bemporad and Morari, starting with [26]. The approach
bridges the wide gap in-between the theoretical and practical application of the MPC
methodology. Their work is later progressing towards the Explicit Model Predictive
Control (EMPC), with the main idea of putting into focus a simplification of the
online processing burden. Bearing in mind the method’s systematic and structural
solution for the linear systems, our approach will use that feature, but in the
combination with the decomposition of the nonlinear dynamical modelling
complexity and the reduction of the crucial method’s processing time consumption.
The latter is recognized in the optimization algorithms and the rank of the
dynamical system. The survey of EMPC methods can be found in [6] and in the
references therein. The method’s new trend in achieving and developing the
computer-based algorithms to overcome the main problem of complexity in the MPC
is explicitly presented in their work, which is certainly related to the optimization
algorithms traditionally executed online. The main distinction from the established
methodologies is the intention to transfer the main processing burden to the offline
regime. Therefore, the linear and quadratic programming of the multiple constraints
on the state variables and input variables will now receive a new form in
Mulitiparametric Linear Programming (MLP) or Multiparametric Quadratic
programming (MQP). It is crucial that the offline numerical algorithms, in looking for
a local minimum, are not endangering the software certification problem.
Conversely, the explicit relation of system’s [0 promotes the pricewise linearity and
smoothness in occasions where the nonlinear model is obtained. In these cases, the
solution of the optimized control signal series is called the suboptimal solution.
Following the similar trend in EMPC, we have to note:

1. Optimization algorithms employed only offline

2. Model of dynamical system has to be explicit through the prediction horizon

3. Decomposition of the nonlinear dynamical system into the set of the local

piecewise smooth systems.

Our new control methods are simply correlating with the above stated. In the
previous chapters, it is shown that a good physical insight to the model should be in
favour of reducing the method’s complexity and not the opposite. Thus, we cannot
completely agree that one of the drawbacks recognized in the literature [18,19] is
the necessity of a good physical insight into the system. Oppositely, and in this thesis
underlined, it should be a basic precondition in the rendering of a stable and
intelligent control solution. Instead of considering the MPC as the overall applicable
control technique encapsulated into the comprehensive package, we find and
underline it as the methodology that proclaims the analytic and systematic approach
to the complex systems. That is why its final form, defined as the control algorithm,
should be the physical case-oriented product. This statement is emphasized in the
previous chapters. Additionally, it is important to include a decomposition of the
nonlinear control problem and the appliance of the MPC, of this thesis, that together
reduce the online overall complexity and support the method’s wider applicability to
the faster processes.
In the example of this work, the modelling of a dynamical system in the alternative
way might reduce the complexity, not only in the offline optimization, but also in the
amount of the state variables, strictly related to the rank of the system. Another
innovation is shown in the reduction of the number of characteristic pricewise
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regions, which should not be considered the hybrid system modes (3.29), but more
in the robust sense of the system's overall solution.

4.1.1 Two degrees of freedom methodology, the way to control law

Although the physical system has been identified and the global model derived,
implementation into the final control algorithm will not follow the regular MPC
framework. As already mentioned in the introduction, the main lead will be final
control simplicity. In order to utilize a well-established PID control, which is
sufficiently applicable in the narrow range around the predefined operating point,
and at a same time by having known the global process pattern, we form a robust
control structure presented by the block diagram of Figure 4.1. In Chapter III, the
derived Fuzzy Explicit Model (FEM) will be enriched by integration block and
expressed in the common transfer function
. T,

Gy (2) =F (x(k))Ta(z—S—l)'

Inputs assigned by N,(z),N,(z) denote the noise signal supplemented to the
manipulated variable and measured output respectively. The ¥ = [vo,iL,iR,E] is a

vector of measured process variables integrated into the control concept and
providing the fuzzy model’s tracking lead.

Fig. 4.1 Implementation of the Fuzzy Explicit Model in the typical two degrees of
freedom control structure

By forming all the SISO possible closed loop transfer functions from the control
structure on Figure 4.1, assuming that other inputs are 0 and dy/dt =0, one can
easily examine the existence of only two independent transfer functions. Hence, it
defines our control structure as the Two Degrees of Freedom control [44].

This control methodology complies with our main goal of partitioning the standard
MPC method and allowing independent adjustment of the system'’s response, linked
up to the process constraints and steady state stability. Following the above
methodology, the controller consists of the steady-state fuzzy-model in the feed-
forward line and the optimized PI controller in the main controller’s line.

The control law is formed from the two non-correlated (in a phase of designing)
control signals
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4,0 = 2§ i KT+ 1) (+1)
where

: AL
o (0= F () =BG 1 B2 ) (+2)

is the predictive part of the control algorithm based on the Explicit Fuzzy Model
derived from the offline identification process in Chapter III (Subsection 3.3.1), and
dp, = Gp (s —-v,) is the output from the analog PI controller.

Conceptually similar to the Explicit Model Predictive Controls [6] in the sense of the
offline identified model-based control, but advanced in minimization of the online
computation complexity, this method opens up the ability to conciliate a better
controller’'s performance with avoidance of the complex Multiparametric
Programming. This method does not solve the standard predictive control problem,
and it is not based on the receding horizon principle and thus, in correlation with
standardized MPC methods, points out:

- The prediction horizon is infinite, it goes for an open-loop stable system and the
prediction is related to the system’s steady state.

- The reference trajectory is implemented by an extra integration on the output
of the explicit model. The time of integration is a tuning parameter and affects
the controller’s aggressiveness in the transient time.

- The internal model is the Fuzzy Explicit Model of the steady-state duty cycle
and not the Fuzzy Dynamical Model, and accordingly it does not suffer a typical
feedback problem.

- The steady-state error is compensated with a standard analog PI control tuned
in the highest process gain regime and it is not treated by the predictive control
itself.

- The feed-forward characteristic of the standard MPC method is explicitly
fulfilled by the controller’s configuration.
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Fig. 4.2 Simulation model for the TDOF Control method based on Global
and Explicit Fuzzy Model of the converter’s steady-state duty cycle

For the simulation purpose of this work, shown in Figure 4.2, and without loss of
generality, the optimized PI controller will be constructed based purely on the
MATLAB tools for the SISO controllers [29]. The original boost DC-DC converter or
process in this investigation is shown in Figure 2.12b and will be linearized by the
well-known perturbation method around the operating point (Subsection 2.3.1), and
accordingly as an “Averaged-Switch Model” [43] introduced in the control
optimization of the PI controller.

The construction and tuning of the PI controller is done in the two standard steps of
the “sisotool” MATLAB toolbox:

1. Construction of the PI controller by the auto-tuning method based on the
singular frequency and minimizing the ITAE (Integral Time Absolute Error)
performance

2. Optimization-based tuning by the Gradient Descent Algorithm for a Medium
Scale.

The transfer function of the analog controller in its equivalent discrete form for a

sample time 7, , =107 s is
-1.000354
G, (z) = 5.648 10'4(Z—1) (4.3)
Z —
The offline optimization is done around the operating point
s=50V, E=10V, R=125Q (4.4)

which is selected closer to the top border of the process gain and the coil current
range in order to achieve a stable operation even with a large difference in the
process parameters.

Optimization is performed on the “averaged-switch model” linearized around the
operating point and in its discrete form
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-0.0902377 +0.0904
72 = 27+0.9996

G,(2) = (4.5)

From equation (4.2), it is clear that the input in the fuzzy model is a vector of the
measured values, except the one related to the predicted coil current in the steady
state 1, .

The steady-state coil current is calculated by involving the conserved energy law
and the assumption that the load in the secondary circuit of the DC-DC converter
will be changed only in a time that is incomparably wider than the scan time
or At >>T;. Also, the current efficiency factor has been taken as an average for a
specific converter’s operating range, already predefined with universes of
discourses.

4.1.1.1 Simulation of the control algorithm

The simulation of the control algorithm involves a continuous disturbance, which in
its final meaning has to result in the performance comparison of the TDOF method
and the classic optimized PI control. The objectives in this control technique are
primarily the robustness and minimization of the transient time. Thus, the process
step parameter changes are commenced in combination, or all together for a wider
operating range of the DC-DC converter. By altering the reference point s, the
converter will be guided from the current discontinuous mode of operation to the
continuous mode, where the highest process gain is expected at the top border of
the coil current universe of discourse. The process parameters in the simulation are

T, =333.33us, L =208 uH, C =222 uF.
The aggressiveness of the model control is tuned and results in

T, =0.004

by taking care of the current i, constraint and the duty cycle d, first derivation
constraint.

Figure 4.3a shows the controlled process output responses for a certain controller
on the step changes of the source voltage E, the load resistance R and the voltage
set-point s. The optimized PI controller is tested in the two control structures: first,
as pure PI control with the feed-forward line disconnected; second, as a PI control
integrated into the complete TDOF control structure. In the same test, Figure 4.3b
shows the controllers’ manipulated variables. Furthermore, Figure 4.3c shows the
manipulated variable of TDOF controller presented by its two constructive parts.
That explicitly presents the main features of the TDOF control methodology.

The disturbance of the process parameters is synchronized with the set point
change or separately to simulate a possibly realistic DC-DC converter’s operating
regime.

Generally, in this work, the developed TDOF controller features stable and robust
operation. We see that the two-dynamic approach, also affirmed by the
decomposition of the general controller parameters, fulfilled expectations and
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presents the remarkable results relative to the complexity of the design and the
online processing time. The stability of the control method relies on the stability of
the PI controller and that is not a chain related to the delays in the transient time,
which is now only related to the physical constraints. The only drawback is a
naturally present model/process error and its effect on the steady-state error,
manifesting as an overshoot, but now less harmful than the perspective cause of the
nonlinearities in the standard MPC methods.

The offline optimized PI controller is comparable in the process higher gain range
where the optimization was done. The constraints handling of the input signal in the
PI optimized controller can be achieved as well as with MPC controllers by the
selection of the highest gain operating point. In the TDOF controller, this feature is
already integrated into the steady-state fuzzy model; therefore, a proper tuning of
the PI parameters preserves it.

Comparison of responses
T T

7S

\ E=105V i
R=12.5 Ohm

E=112V
| R=15 Otm R

—— TDOF method, controlled voltage
—— Pl only, controlled voltage

10 i
E=16V o i
R=30 Ohm Set point voltage

| | | | | |
0 02 0.4 0.6 08 1 12

" fime [s]

a) Controlled variable v  compared in between optimized PI and
TDOF controller including FEM

Manipulated variables
T T

1 1
—Plcontrol only, ouputd |
____TDOF, outputd '

du
duty cycle

02 0.4 0.6 08 1 12
time [s]

b) Manipulated variable d, compared in between
optimized PI and TDOF controller
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Two Degrees of Freedom, manipulated variables before summation
07 \ \ \ \

I dp‘ output

—— D output

| | | | | |
0 0.2 0.4 0.6 08 1 12
time [s]

c) Manipulated variables of TDOF controller before the summation point in the control loop

Fig. 4.3 Simulation results: a, b and c.

4.1.1.2 Conclusion about the TDOF control

The above-presented control method is new in SAS, and in general could be
considered as the model-based method. It involves the TDOF principle applied to an
open-loop stable hybrid system that is state measurable. Instead of focusing on the
transient process characteristics, the method points out the global process
knowledge of the steady state. As shown, this knowledge is integrated into the
explicit fuzzy model gained by the identification process from Chapter III,
Subsection 3.3.1. Each processor’s scan time, and controller predicts the steady-state
duty cycle and by concerning the physical constraints adopts with the fastest
transient time to the process parameters’ change. The misfortune in the
model/process approximation error is compensated by the small signal PI
optimized controller, developed with the standard toolbox. The stability of the
control system is related only to the stability of the feedback-related and standard PI
controller by taking into consideration that the process parameters’ change period
is incomparable longer than the controller’s scanning time.

Further examinations will be conducted at the direction of a qualitative/quantitative
MPC solution.

4.1.2 Paradigm in the modelling of a DC-DC Boost Converter, synthesis to
general control of SAS

Inspired by the qualitative problems of HSs in general and their established
modelling principles, presented in Chapter II, the alternative modelling way should
contribute to the better applicability of MPC, generally relying on the pragmatic and
deterministic modelling principles. Our intention is to emphasize the importance of
the physical knowledge of the particular process and the active reformulation of
modelling principles from a side of the control applicability and physical knowledge.
The modelling paradigm of a DC-DC boost converter, synthesized in the alternative
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MPC approach, will be again highlighted briefly, followed by an application to the
real process of SAS.

For the principal part of the electronic circuit in Figure 2.12b, apart from the pulse-
width modulator (PWM) and the controller with its set point s, by using Kirchhoff's
voltage and current laws, we can form the ordinary differential equations (ODEs)
Z(t) = f(z(1)) + g(z(t))u(t). By selecting the state vector z(t) =[vc(t) iL(t)]T and the
input as an independent voltage source E(t), the mathematical model can be driven
with the assumption that semiconductors are ideal switches and that the inductivity
has no equivalent series resistance (ESR) [7]

2(t) =A;z(t) + B,E(t) i€[1,2,3] i - circuit topology

1 [-10 0 0
A=——— ,B=B,=|1|B, = (4.7)
C(R+r)[0 O - 7 10
1 [ -1 R 1 -1 0
A2= —— | -CR  -CRi¢ |, A2 = .
C(R+r) T > CR+r)|0 O

The mathematical modelling of switched-mode electrical circuits faces problems of
discontinuity and all the related side effects or nonlinearities [1].

Even if a simple switching algorithm is selected, the analytical definition of the duty
cycle becomes a transcendental mathematical problem and it can only be solved by
numerical methods. The reader is referred to the extensive literature [1,7-10], and
references therein, that define the aforementioned problems.

Based on the authors’ opinions and knowledge about this particular physical system,
further well-established analytical modelling mostly develops in two different
directions: first, already found in the earlier work of Middlebrook, Cuk, and Erikson
[23,24], modelling by small signal models or large signal models, more from the side
of elementary circuit theory (Subsection 2.3.1); and second, also the one comprising
the previously mentioned, but more analytically structured in the modern theory of
modelling hybrid systems (Subsection 2.3.3). The latter is conceptually connected to
the system'’s piecewise linearity (PWL), with the implementation of logical variables,
constraints, or inequalities as the product of the natural form of the system. A
distinctive presentation on the equivalence of classes of hybrid dynamical models is
available in [25]. The methods that can be recognized as the most efficient and the
general parameters that decide it are still unknown.

Therefore, if we agree that the aforementioned assumptions (4.7) are negligible, we
can proceed with the subsequent steps of modelling into the hybrid system model
(3.29)

Now, we simply recognize a hybrid automaton, Figure 2.13, with three discrete
states defining different continuous dynamics. In the hybrid system modelling, those
discrete states are connected to the mode of the system’s operation. From equation
(3.29) we find that the modes are defined by the converter’s switching period 7, and
the sub-intervals ¢ +¢ +¢ =T. The converter is driven by the PWM and the duty

cycle d =1,,7,”". Thus, our system is representative of the Switched Affine Systems
(SAS). From the aforementioned, with a known T, a definition of the sub-intervals
relies on the duty cycle, which is defined as a function of the state variables z(z). The
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problem that has to be handled by the hybrid system’s formalisms is the prediction
of the time sub-intervals. That is critical in the prediction of 7 naturally controlled

by the diode’s (Figure 2.12b) disconnection, which is a distinctive mode of the
converter’s functioning called DCM. The time of the transistor’s on-state is 7 . In the

following sequence ¢ is the time of the transistor’s off-state, dependent on the
natural diode’s commutation that lasts 7 before the next cycle 7; appears (Table

2.2). Nevertheless, from the aspects of the control techniques the input signal to our
model has to be the duty cycle, and in (3.29) the PWL continuous systems are based
on the source voltage as an input (Subsection 2.3.1). The well-established hybrid
system formalisms take a DC-DC boost converter as an illustrative example [2], but it
is far from that from our point of view (Subsections 2.2.1 & 2.2.2).

Our final goal is to render the modern and intelligent control methodology for a
nonlinear dynamical system. Analysing the process and selecting its
qualitative/quantitative properties based on the physical system’s knowledge will
achieve the main control objective once the mentioned knowledge is properly
integrated to the control algorithm. More comprehensive and advanced control
methodologies are based on a mathematical model of the process evolving to the
model control solution. The compact and well-developed methodology is a MPC
[18,19]. Our work is conducted in that direction. It is why the modelling discussion
starting in Chapter Il and evolved in Chapter IlI is of crucial importance.

The first concern emerging in the analysis of the modelling formalism (3.29) is that
in our example of SAS the physical process is a combination of modes. The mode by
itself has no physical background if it is not related to other modes that are in
harmony with the physical meaning. If there is no exchange of hybrid modes, the
electronic circuit does not function. To fulfil that, a controlled variable is a periodic
orbit (Subsection 2.2.2), and it must be observed from the point of view of its
periodicity.

Second, the nonlinearity of the system is not only its hybrid structure, but it is by
assumption (4.7) also excluded from the nonlinear circuit elements together with
the anomalies caused by the energy dissipation. Our process is PEC and the main
physical meaning is the energy transfer.

Third, a modelling problem is a multidisciplinary task and from the control aspects
it should be driven by the final goal, the controllability and the stability of the
process [20], which includes an exclusion of the nonlinear phenomena (Subsection
2.2.2).

Yield, a decomposition of the nonlinear system problem to the PWL (3.29) is
plausible, but it has to be done carefully in order to avoid any unnecessary
complexity and increase the accuracy in realistic applications.

As a conclusion about the objectives, we are focused on a system with a fixed
switching period 7, equal to the sampling time, where 7 .t .t <7 are the times

related to a different circuit topology. From the side of the nonlinear dynamical
system examinations, a general expression must evolve in the yet-unknown
Z(t) = f(z(t),d(t))+ g(z(t),d(t))d(t), for the duty cycle d = tlykTS"as a control signal for
closed-loop control and scalar input signal in the process. The duty cycle and PWM is
the genuine part of our process and must be modelled accordingly.
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By the involvement of identification (Subsection 3.3.3) in the robust modelling of
switched mode converters and the avoidance of strict assumptions, we propose
refinements to the general modelling approach

AZ(k)+Bu(k) if 8,(k) =1
2(k+1)= :
A, 2()+B, u(k) if 5, (k) =1
8.(kye{0,1} Vi=1,..n,

(4.8)
@[d(k) = 1] n, — number of integervariables

9, ﬁ@j =@, Vi=j 9, -i™ polytop,

z noo
) Up, =9

i=l1

[0,(k) =1] <

o

which then evolves into general approximations of the nonlinear dynamical system
using the equation

2(k+1) = i[ﬁiz(k) +Bu(k)]o,(k). (4.9)

The reader is referred to [26] and the references therein.

The modelling approach (4.8), (4.9) is generally derived from (4.7) and (3.29) and
finalized by the MLD modelling (Subsection 2.3.3). To derive the final MLD
expression for the DC-DC boost converter in Figure 2.12b, a naturally hybrid system
(3.29) or hybrid automaton will be approximated by a discrete hybrid automaton,
Figure 2.14. The new formalism has to be seen as a final discrete-time model, as
shown in (4.8) and (4.9) in the general sense. As shown in Subsection 2.3.3 and in
literature [2,3,5,6,17], the MLD modelling is explained by the HYSDEL framework.
The recognition of the integer variables 6i(k)E{0,1}, and accordingly the
appropriate model for i =0,...n,, is based on the time that has to be shorter than the
discrete time step, k7T, <t<(k+1)7.. In the online processor’s operation, this
methodology assumes that the definition of §,(k) and the calculation of the Ai, f?l.
matrices (4.9) (see (2.68-2.78)), that are the approximation of the system’s
operation in the contemporary linear region {,C £, are possible during the time
t <T.. From the point of view of a fixed switching period Ts equal to the sampling

time, the state-space matrices Ai, f?l. in (4.9) do not correspond to (4.7). That is not
only because the matrices A,, B, (4.7) are of the continuous space, it is also that Ai,

f?l. in (4.9) are assumed to be discrete time ¢ = k7, sate-space matrices. Further on,
those must be accordingly predicted for the system’s evolution through the time
kT, <t <(k+1)T, based on the predecessor control variable u(k) = d(k). For a DC-DC
boost converter, it is a result of propositional logic equations built on the multiple
logic variables that are defined from the A/D and D/A variables’ transformations
during each time step kT, (2.73-2.74) & (2.78). The general approach discussed
elevates the original state-space model (4.7) by the involvement of the new discrete
state variables, thus dim(z) > dim(z). Hence, it necessarily affects the complexity of
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the state-space model and accordingly limits the applicability. Besides the
underlined online complexity, the MLD model is valid for an assumption made in
(4.7) added to ESR assumptions as a constructive part of the electronic circuit.
Therefore, the modelling uncertainty that is characteristic for the example of this
work is not completely grasped for natural processes.

This thesis is carried out differently to find accurate modelling, which also preserves
the robust and general knowledge of the system. Furthermore, it results in a
mathematical form that is subsequently applicable for the well-developed MPC. The
method is based on a state measurable system, including the source and output
current, and transfers the main burden of nonlinear dynamical system examination
strictly to the offline problem with all its complexity. Hence, it can be simply
considered as one of the EMPC methods [6].

The mathematical framework will not be exact and focused on the problem of
differential inclusion and complementarity formalism [12,13,27], but rather on
solutions in the pseudo-norm vector space (Subsection 3.3.1).

Theoretically, the idea is strongly supported in [28, Chapter 3], and elementarily
connected to the approximate continuity and smoothing operation of the disjoint
sets in the Lebesgue space.

If we now reconsider the averaging idea in Subsection 2.3.1 to derive the local
model, but numerically emphasizing the mathematical expression of the electronic
circuit equivalent for the time ¢ =7,, we are smoothing the disjoint model structure
in ¢t <T,. This smoothing operation, with the assumed measuring ability of E(t), iL(£),
Vo(t), and ir(t), will, unlike the known analytical averaging process, find an
approximation on a wider range of system parameter variation around the
operating points (OPs). At the same time, the derived local model is a part of a new
pseudo-norm space &, and containing the discrete equivalents of approximately
continuous functions f,(x, (k)) C ¢, C . The edges of previous polytopes (4.8) are
softened by fuzzy logic in Subsection 3.3.3 and new-formed regions smoothly
passing from one to another, tracking the system parameters’ fluctuations.

Equation (4.8) now obtains a form different from any of the aforementioned
(Section 2.3) analytically driven approaches

x,(k+1)=Y[A, x,(k)+B, u(k)+R, wk)](g,(k))
= (4.10)

B@()EL] X B@,(k)=1 i=l..p

where the matrices A, ,B,, are the new numerically identified state-space matrices,

m;?

R, is the residual matrix and f(g,(k)) (3.51) are the normalized degrees of

fulfilment. The state-space matrices are explained in detail in the following section.
Even though the p (3.47) is not an equivalent to the n; (4.8), as it is about completely
different linear regions, p < n; and reduces the online processing work load. In the
equation (4.10) we can recognize the main difference with respect to a typical MLD
approach based on (3.29) that is conceived in the normalized degree of fulfilment
and new matrices. The former is a function of a regression vector ¢, (k), particularly
common for an identification process and consisting of measured system variables
in a time ¢ < 7;. In other words, the bivalent logic encoding of the uncertainties in
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(3.29) and (4.8) (Section 3.2) is evolved by the polyvalent fuzzy logic, more
convenient for a complexity of realistic examples. Apart from that, the matrices A

m;?

B, and R, are rendered by the identification process, performed without the

subjective assumptions and simplification of an electronic circuit. The new vector of
state variables x, (k) is not augmented (2.77), but maintains a dimension of 2 as in

(4.7).

However, the theory of discrete hybrid automata and in general the analytical
modelling (4.8) of the physical system from Figure 2.12b was conducted using
MATLAB [29] continuous/discrete functions in a hybrid simulation model in Figure
2.3 and 3.3. Considering the processing power of a PC, and the advanced MATLAB
tool with the possibility of embedded functions, the constructed model will provide
an acceptably accurate approximation of the physical model and the basis for the
development of the subsequent methodology.

At this point, we have seen in Chapter III that further examinations were based on
the numerical methods in the simulation and control design of the predictive control
algorithm, and in contrast to most of the known developed methods, they do not
consist of PWL expressions (4.7) (see Section 2.3). By knowing that the major
objective of the control in the example of this thesis is control of the output voltage,
which is assumed to be a DC signal, the physical approach including the
aforementioned leads us to the selection of the root-mean-square (RMS) measured
values. That was the reason that in Section 3.3 the new state variables cause a
mathematical transformation of the original state-space (4.7) to the pseudo-norm
vector space. It is feasible and based on the assumption that a new state vector

zZ= [\70 , zTL]Eﬂ_2 (Lebesgue), as a product of the numerical integration methods with

an approximate solution in the system discontinuity. The transformation was made
using MATLAB embedded functions applied to the simulation model, Figure 3.3.
Accordingly, for a final experiment, we present a realistic counterpart of the
numerical integration in the rendering of the Lebesgue 2 normed space. Figure 3.16
presents an integrated circuit (IC) AD637 that is built to provide continuous states
of the transformed hybrid system state-space. Its role is to reduce the online
processing workload, and to inherit the continuous system like the accuracy of the
integration in the rendering of the RMS values. The RMS measurement of the
original state-space variables and the measurement of E(t) and ir(t) is carried out in
the time period Ts, excited by PWM scaled duty cycle d..

4.2 Applied MPC methods’ overview

The fuzzy identification of the DC-DC boost converter derived FIRM (Finite Impulse
Response Model) is generally in the form (3.54) or also typically called input/output
model [19], where the indices k denote a time-variable linear model.

By assuming a full-state measurement system, a novel approach in the research of
the DC-DC boost converter is the fact that the current of a primary circuit i.(k) will
be obtained by a further mathematical modelling assumed to be a part of the
measured disturbance matrix R, (4.10). The R, also consists of the residual

component a, . of our identified model (3.54). The following control algorithms

m5,
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based on a fuzzy internal model are derived for only one natural state variable that
is simultaneously the output and controlled variable.
The MPC problem will be solved online in one scan of the processor time k for the
model
x,(k+1)=A, x, (k)+B, d (k)+R, w(k)

' ' (4.11)
y.(k)=C, x,(k)+D,, v, (k)

, which will be an approximated linear model in the state-space form y, =C, x,,.
The state-space matrices at time ¢ = k7, are

A - amlk am2k B - am4k
" 1 0 " 0

R =[am3kiL(k)+amSk
0
¢, =[t o] D, =0

(4.12)

m

and v, (k),d (k),w(k)=1 denotes output voltage, duty cycle and unit step
disturbance of a DC-DC converter, respectively.

This will be a basic representation of the internal model in the following Finite
Horizon Fuzzy MPC (FMPC) algorithms applied in the simulation and experiment.

As the introduction of this chapter mentioned, the MPC methods are traditionally
considered for the processes with slow dynamics. Their limitation can be recognized
in the computing complexity, which is a multilayer problem. Despite being aware of
this limitation, our work was driven by the final goal: implementing a MPC into the
processes with faster dynamics. In the last 20 years, the MPC methodology has been
developed to become the most dominant in process technology. It was given great
attention by academia. That developing process has constructed a control
framework as a result of long-term research in the field of control techniques.
Therefore, it is a respective control solution for a broad number of different
processes. Unfortunately, it is too pragmatic to expect that one control toolbox can
grasp all possible natural processes and automatically devise the most efficient way
of controlling them. We refer the reader to [6] and the references therein, where the
authors present a survey of EMPC. That work certainly gives the diversities of the
MPC complexity, in general.

Shown in Chapter III and continued here, the physical system’s extents and
constraints do not necessarily lead to the complexity of the applied control
technique. In our work, we found the MPC method to be more a methodology than a
single technique [19]. We have to underline its compact and standardized
framework in looking for a stable control technique in the robust sense. The main
drawback of the method is its complexity. As discussed in [6], the EMPC emerges as
the solution to that problem. It suggests a transferring of the online processor’s
work to the offline regime. Our methodology is correlated to that idea. The
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optimization algorithms or solvers are the biggest processing time consumer.
Because of that fact we performed a different recognition of the problem for an
example of this work. Our online processing related to the MPC method is reduced to
the unconstrained standard predictive control problem [18,19]. It is driven to the
complete exclusion of the optimization algorithms and it can be considered as the
sub-optimal control. The MPC online optimization is derived by the basic linear
algebra problem dJ(k)/du(k) =0, in which J(k) denotes the performance index and
u(k) an input variable. A DC-DC boost converter’s input variable u(k)=d (k) is
constrained with the interval [0,max(d, (k)) <1). This critical constraint should not
be a problem of the control algorithm, but rather a problem of the physical process,
and it is tackled by the process itself. Although an unrealistic combination of the
process parameters can lead to a violation of that constraint, the fuzzy identified
model (3.54), (4.10-4.11), will even in that case saturate the control variable to the
assigned margins. Furthermore, the state variables’ constraints are grasped by the
suppression factors A of the MPC performance index J(k), to decelerate a quick
controller’s response. In the case of the high peaks of the state variables, which are
the characteristic events of the PEC, our controller will be disturbed proportionally
to the energy level of the particular transient, Figure 3.16. This is obvious by
recalling the external RMS measured values (AD637). The unexpected peaks are
products of the process parameters’ change and it is sufficiently treated by the
method’s reference model interpolation. The complex LMI is considered
unnecessary, if the previous modelling work has achieved the most accurate linear
approximation of the system at the specific operating point. In the absence of any
processing time ‘luxury’, that assumption performs acceptably. The time of the
processing is not only burdened by the optimization as a cumbersome solution, but
also by the rank of the process model. Our suggested modelling solution preserves
the original rank of the system, characteristically for the traditional state-space
averaging. The global model identification strategy discussed, and based on the
objective physical constraints renders the explicit control solution in the sense of
the EMPC main goal. In contrast, the physical constraints are not simply assumed as
being fixed. The online T-S fuzzy logic will select the consequence linear function
that is a product of a measurement at the time &7}, and treat a realistic violation of
the assumed constraints. Using a case-oriented implementation of the MPC, we
reduce the processing complexity, but do not endanger the objectivity and the
accuracy. Reducing the problem of the nonlinear dynamical system to the PWL
constrains the MPC on the short horizon prediction and control solution. So, a
physical limitation should work in the sense of the MPC reduction complexity in
combination with the aforementioned.

4.2.1 Fuzzy Dynamic Matrix Control

The first and the most basic MPC is the one strictly based on the Dynamic Matrix
[18,32,38]. As our system is proven to be open-loop stable, the DMC can be
performed over the Finite Impulse Response Model (FIRM) (3.54) by transformation
in the Finite Step Response Model (FSRM), which is one of the main characteristics of
the DMC algorithm. The control law must minimize the performance index.
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The transformation of FIRM by the use of successive substitution progresses in

K, ()=C, (A, -DA, -D i€[N,.N,]

m?

vu(k+N)=C, A, "x, (K)+ (4.13)

Nu
+K, (N)R, +B, [u(k-1)+YAu(k+N, -i)]}

i=1

Vo (k+N)=C, A, “x (k)+K, (N)IR, +B, u(k-1)] (4.14)

Nu
Vyk+N)=YK, (N)B, Au(k+N,-i) (4.15)
i=1

thus, explicitly presents the predicted model output in the maximum prediction
interval N,

Equation (4.13) in accordance with DMC gives the FSRM consisting of two responses:
one related to model free y,  (4.14) and the other to the forced y, , (4.15) response.

The strategy of MPC is receding-horizon control. That approach considers each
step prediction of the complete sequence of the control signal in the assigned horizon,
necessary to be applied to the process in order to follow the previously defined
reference trajectory. Only the first predicted control signal will also be applied to the
process. The reference trajectory r(k +i) = s(k) - ari[s(k) - y(k)] selected in our paper
is a first-order model interpolated in-between the last measured output signal and the
set point including the control aggressiveness parameter a,. The control law must
minimize the following performance index

N, -1

JK) = 3q.0,, (k+i1K) = r(k+i1k)” + 3 A, () Aulk +i1k)?. (4.16)

i=1

or in matrix equation

J(k) = |GU)AU (k) - W(K)| o + AU reey (4.17)
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In equation (4.17) G denotes the dynamic matrix, W(k) vector of errors over the
predicted horizon in-between the reference trajectory and free model response
Y.,(k+1i) in i coincidence points, and AU(k) vector of control variable steps through
the complete horizon N,. Q and R(k) are the state and control weighting matrixes,

respectively. Realization of the optimal control law leads further in the calculation of
the performance index gradient VJ(Au,k),, and in the final control-law equation

Au(k) = A(G'QG +R)'G" QW . (4.18)

The dynamic matrix G derived for the process example in this work is

Cony B, 0 0 0
K(2) Con B, 0 0
K(3) K(2) Cn, B,
. .
0 (4.19)
Con B, 0
i K(N,) K(3) K(2) ka Bmk |

K@) = EKW 0B, J€[N,.N,]

= Nm

The matrix A in general presents a selection of only the first in the sequence of
control variables. Our example from the control aspects studies the SISO case and A
will be a vector with the scalar 1 only in the first column and all others 0.

The DC-DC boost converter is a constrained process and represents the sub-optimal
solution with a lack of complex quadratic programming (4.18). In this way, we
achieve the expected and stable results of control with a smaller calculation. The only
drawback is the involvement of the time-variable matrix R(k) in (4.16), or (4.17)
consisting of the control variable suppression factor A(k).

4.2.2 Fuzzy Generalized Predictive Control

To be able to compare the achieved results with other MPC methods, we are going to
use the Generalized Predictive Control (GPC) as the most standardized with respect
of workability in the wide range of processes, even those that are open loop instable
or non-minimum phase systems [136]. Our GPC algorithm will be expanded with
the output filter presented in very early works of Clarke [137] and in nowadays
publications [19]. As the example in this thesis is a highly nonlinear, but stable
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system, and at the same time we are achieving robustness, the output auxiliary
function is added in a sense to more strongly penalize the overshoots for the large
variety of the set-point.

Similarly, as done in DMC, our solution will be based on FSRM, or the increment
input-output model form, but now with a more generalized approach in the state-
space. Including the proofs, it is very well presented in [19].

The model will firstly be transferred from (4.11) and (4.12) into the FSRM (4.20), by
the new state-space matrixes that are developed from the substitution of the state-
space variables, where d; denotes disturbance, €, noise and Ax,, one step difference
of the previously posed state variables (4.11) (for details see [19]).

x,(k+1) = A, x,(k) + B, Au(k) + K, e (k) + L, d,(k)

(4.20)
Y. (k) =C, x;(k)+Dye (k) +D,d,(k)
We see that the disturbance is just differently modelled from (4.11), where x,
denotes a new state vector consisting of the increments Ax, , by expression in bi-
linear form

R, w(k) =K, e (k)+L,d (k) (4.21)

in order to preserve the general approach. The matrices A, ,B, ,K, ,L, ,C, ,D, and

D, are of the suitable dimensions. In the sequel, the matrix D, =0 for the GPC
method as the output will be filtered.

As previously mentioned by the filter, the increment input-output model (4.20) will
be expanded in a cascade form by the 2nd order system (P(z) =1+ pz”' + p,z~) as
y(k) = P(x,(k),y,(k))y, (k)

, and for a state space matrixes of P(x,(k),y,(k));
0 1 D
A = [0 ol B, =

12

also called the weighting filter [137]. The standard predictive control problem that
has to be derived for the GPC, will be applied to a new transformed model (4.20)
[19]. The solution evolves in the lifted state-space model (4.23), which will be used
bearing in mind a standardize expression for the involvement of the various
performance indexes.

Any known type of the performance index can be applied to the standard expression
in the state-space

c,=[1 o] D =[] , (4.22)

x(k+1) = Ax(k) + Be(k) + By (k) + B,v(k)
y(k) = C\x(k) + D,e(k) + D,y (k) + D,;v (k) (4.23)
x,(k) =C,x(k)+ D,e(k)+D,y(k)+ D, v(k)

where the new state-space variables x(k) denote the state vector, e(k) the noise
signal, (k) the known external signals (the reference point or disturbance) and
v(k) the standardize input signal in the model. The latter could be either the input to
FIRM u(k) or the increment input to FSRM. In our case, it is Au(k)(4.20). Thus, the
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new equation x,(k) in the lifted state-space (4.24) already consists of the selected
performance index. All the state-space matrixes A, B;, C; and D, are of the

appropriate dimensions.
We have selected the standardized GPC performance index

J) =S &, (k+ j1OT(G) &, (k+j1k) . (4.24)

j=l
The matrix I'(j) is a diagonal selection matrix and, more generally, a part of the
general selection matrix

rdg o 0V 0=<j< -1

0 1 YV N, -l<j<N, -1

)

E()) =[

where N, andN, denote the minimum cost horizon and the prediction horizon

respectively.
The expressions with the diacritical marks on top of variables are related to the
prediction horizon. The y, is a predicted output of the overall expended original

model and x, is the new vector in the state-space considering the control
performance

X 5, (k)

*0= x 5, (k)

¥, (k+1) = r(k +1)
- AAu(k)

(4.26)

The variable r(k+1) denotes a reference trajectory point in the one-step-ahead
predicted time.
For a standard predictive control problem, the state-space (4.23) is by successive
method developed for a complete control horizon, and in our example to

X, (k) = C,x(k) + D, e(k) + D,,y(k) + D,;u(k)

C, | [ D, O - 0 0]
C,A C,B, D, . :
c,=| c,A> | b,=| C,AB, C,B, *. 0 0 : (4.27)
: : . D, O
C,A™ C,A™ B, -+ C,B, D,,]|
D, | [ D, 0O -« 0 0]
C,B, C,B, D, . :
D, =| C,AB, D,=| C,AB, C,B, *. 0 0
: : D, O
|C,A™ B, | C,AM B, -+ C,By; D]
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With the thus-expanded state space model, we continue with the construction of the
suboptimal control algorithm, and minimizing the performance index (4.24), (4.26).
Thus, the control law that is expressed as follows

v(k) = Au(k) = -Fx(k | k) + D,e(k | k) + D, y(k | k)

F=E®D,'TDh,) "D, TC,

D, =-E(D,'TD,,)"' D, TD,

D, = —E(D,/Tb,)" b, TD, | (4.28)
E=[10 ... 0]

T= diag[F(O),r(l),---’F(Nu - 1)]

It is derived by assuming that the standard predictive control is a feasible problem
or, generally, [19]:

1. The equality process constraints are a feasible problem
2. The matrix (D,,' TD,;) has a full row rank
3. The (A,B,) (4.23) matrixes are stabilizable.

In the example of this thesis, the process is open-loop stable, and constraints will be
treated by the suboptimal control manner.

4.2.3 Fuzzy Predictive Functional Control

The Predictive Functional Control (PFC) method originally developed by Richalet
[39,40], and further in [41], has been chosen precisely because of its main
distinction, when compared with the already explained DMC and GPC methods.
Thus, the reduction of the algorithm calculation workload and the simultaneous
achievements in the fast response processes make this method very suitable for the
objectives given in the example of this work. The control law must minimize the
performance index

J(@,k) = EH(yR(k+Hj 1k)=y, (k+H |1<))2 + EHljz(k)ﬁ(k+j—l O dik+ j-11k). (4.29)
j=l

j=I

The nonlinear model that is going to be used in the construction of the control law is
already expressed by (4.13) and by its forced (4.15) and free (4.14) response. The
source equation in this type of MPC is

Ap =yr(k+N, 1k)-y(k) =

(4.30)
—Am=y (k+N, 1k)-y (k)

this means one process objective increment will be equalized with one increment of
the predicted internal model output [31,33].
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The second characteristic, which is very different from the previous MPC algorithm, is
that the maximum predicted horizon and control horizon together with the coincident
point are mostly equal N, = H.

In our example and because the third main characteristic that the input signal is
constructed of simple basis functions (step, ramp, parabola, etc.),

ik +i 1K) = uy (k) + u,(K)i + uy(K)i* + ..+ u, (k)i" (4.31)

the second characteristic has to be softened to a minimum of the coincidence points,
which corresponds to a number of basis functions in order to agree with the problem
feasibility.

We are choosing the most common reference trajectory in PFC and for the prediction
horizon N,

Yetk+N,) =a" y (k) +(1-a")sk), (4.32)

where a, denotes the main parameter of the control aggressiveness in the PFC and

s(k) is the set-point function.
Therefore, as the selections of the basis functions are tightly connected to the process
characteristics the following equation will be the input variable to the PFC

Ak +i1k) = uy (k) + u, (k)i . (4.33)

Now the set of prediction equations in the PFC algorithm and according to (4.13),
(4.14), (4.15) & (4.33) resultin

[yR(k+Hl)] [ymp(k+Hl)} K(H,) f((Hl)Eiz [”Ol
_ + i=1 .

H,
el L CH I  jey ka3 |
= : (4.34)
or
=E+Vu
By minimizing the performance index
. ny 2
TG ) =Y (e + H 1K)~y (k+ H 1K) +
j=l
ny (4.35)
+ YA (Ryatk+ j-116) @k + j-11k)
j=l
suboptimal control, thus
Au(k) = AV'V+X1)'V(Q-E) . (4.36)

In equation (4.35), n,, denotes the number of coincidence points and A the control-
variable suppression factor.
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The next applied input signal from (4.36) is only u, (k).

Suppression factor A

All selected finite-horizon MPC methods and their objective functions or performance
indexes consist of the suppression factor A applied to the manipulated variable.
Furthermore, it is time dependent and updated for each scan time by the controller’s
algorithm.

The update or A(k) is derived from the simple proportional dependence of the
predicted process gain in the time (k +1)7, and hence

yuk+1)

MK) = ag,pp u(k)

(4.37)

The involvement of the suppression factor in the MPC methods is mostly used to
achieve smoother control [38,40].

4.3 Simulation and experimental results of applied methods to the DC-DC
boost converter

In a manner similar to that in Subsection 4.1.1, and related to the newly developed
control that was applied to the simulation model in Figure 4.2, FMPC methods
gathered in Subsections 4.2.1-4.2.3 will be applied to the simulation model in Figure
4.4. The identified fuzzy model (3.54) is assigned as the FNARX model in Figure 4.4.
[ts transformation into the state space model (4.7) is used as the internal model of
the particular FMPC method and assigned as the MPC Controller block in Figure 4.4.
Thus, the developed control methodology will be applied to the simulation model of
a DC-DC boost converter (Process Hybrid Model), and tested with the same testing
pattern as done in Figure 4.3. That is to be able to render the meaningful
comparison. In the sequel, the result of the simulation process for the FPFC, FGPC,
FDMC, the optimized PI and the TDOF method is presented in Figures 4.5-4.9
respectively. Exceptionally and to contribute to an easier comparison, the Figure 4.3
is split into Figures 4.8 and 4.9.

D FNARX
Model
.
[AE,AR1
.
gamﬂ ’amz 'amfi ’ am4’am5 ] J7
> du Process
MPC Hybrid >
s Controller Model >

Fig. 4.4 Simulation model for FMPC-applied methods
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From the results, we can see the similarities related to the aggressiveness in
transitions and the accuracy in the steady state of the applied FMPC methods. The
best performance is experienced with the FPFC in Figure 4.5, and other methods can
be compared to that reference. Closer to the performance of the FPFC, we found the
FDMC. The FGPC has been found to be just a bit coarser in the steady state, but in
some occasions faster in the response. As expected, the optimized PI controller is
slower in transitions, especially for the operating point where the optimizations are
not performed. That is for the time periods while the lower system gains have been
experienced.

FPFC control response
T —— Controlled voltage
— — - Setpoint voltage
Coil current

Time [s]

a) Controlled variable by the FPFC controller v, and coil current i;

FPFC manipulated variable
07 T

duty cycle

Time [s]

b) Manipulated variable from the FPFC controller (duty cycle)
d, =[001,0.66] range 98.5+1.5%

Fig. 4.5 Simulation results: a and b.

Differently than the aforementioned, the TDOF methodology performs as the fastest
in transitions, but while in transitions the control algorithm cannot attenuate the
gradient of change and, in some occasions, violates the reference point. This
scenario is initiated by the error of the identified steady state, which is filtered out
by the preceding horizon strategy in other FMPCs. On the other side, the TDOF
algorithm will certainly demand significantly less the processor time of execution.
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From that point of view, the optimized PI controller will use the shortest time of
execution, but it is not the robust solution and, in some occasions, cannot reach the
reference value before another is selected, Figure 4.8.

FGPC response

6
Time [s]

a) Controlled variable by the FGPC controller v,, and coil current i

FGPC manipulated variable

— duty cycle

Time [s]

b) Manipulated variable from the FGPC controller (duty cycle)
d, =[001,0.66] range 98.5+1.5%

Fig. 4.6 Simulation results: a and b.
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FDMC response

— — —Setpoint votage
Controlled voltage
Coil current

- v

Time [s]

a) Controlled variable by the FDMC controller v,, and coil current i;

FOMC manipulated variable

07 T
—— duty cycle

b) Manipulated variable from the FDMC controller (duty cycle)
d, =[001,0.66] range 98.5+1.5%
Fig. 4.7 Simulation results: a and b

Pl control response
T

— — - Sefpoint voltage.
—— Controlled voltage
Col curtent

Time [s]

a) Controlled variable by the Optimized PI controller v, and coil current ij
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Pl control manipulated variable

07 T T

06 —

Time [s]

b) Manipulated variable from the Optimized PI controller (duty cycle)
d, =[0.01,0.66] range 98.5+1.5%

Fig. 4.8 Simulation results: a and b.

TDOF control response

= =~ Setpoint voltage
Controlied voltage
Colil Current

6
Time [s]

a) Controlled variable by the TDOF controller v,, and coil current i;

TDOF control manipulated variable

07 T T
— duty cycle

Time [s]

b) Manipulated variable from the TDOF controller (duty cycle)
d, =[0.01,0.66] range 98.5+1.5%

Fig. 4.9 Simulation results: a and b.
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Figure 4.10 presents all methods together and additionally simplifies the
comparison.

All method’s responses

v 1 T T

TDOF method, controlled voltage
——FGPC, controlled voltage
FPFC, controlled voltage

L ADABABAOALONABANIMNBAIA | | oo San N A | AR ANSIAA AN ARAR,
60 —— FDMC, controlled voltage f\ Vs ALY ANRAY
PI, controlled voltage "
Set point voltage \‘\

50— =

s
o= 40 B

f |

| | | | | |
0 02 04 0.6 08 1 12
Time [s]

a) Controlled variable v, compared for all methods

Manipulated variables

T :
—— FDMC output d
——— FGPC output d
FPFC output d
] Pl ouput d
“‘ TDOF output d
06 B
\\/
i
\
05— B
©
8
% 04l _
z |
2
3
03 L K —
—_—
I
02F B
S, b
o1 | | | | | |
0 02 04 08 1 1.2

time [s]
b) Manipulated variable ¢, compared for all methods

Fig. 4.10 Simulation results: a and b.

4.3.1 Fuzzy Dynamic Matrix Control parameters:
The FDMC method is minimizing the (4.17) objective function and asks for the tuning
of Q and R quadratic, diagonal and positive matrixes that are now:
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00001 0 O Mk)y 0 0
Q= 0 . 0 Rk)y=| 0 . 0
0 0 0.0001 0 0 Mk
Q}R(k)e[PalZ\”lZ
AMk) €[50,1500]

The control horizon is equal to the prediction horizon N, =N, =12 and with the
reference trajectory coefficient a. =0.1. To achieve a meaningful comparison to the
other methods the control horizon is selected in all MPC methods equally.

4.3.2 Fuzzy Generalized Predictive Control parameters:
The objective function (4.24), (4.26) minimized by this control method requests a

tuning of suppression factor A(k) €[100,2500] .
The selected transfer function of weighting output filter in accordance with GPC
method is

P(2)=1-167"+0.67" .

The control horizon and the reference trajectory coefficients are N, =N, =12 and
a, =0.996 respectively.

4.3.3 Fuzzy Predictive Functional Control parameters:

The step and parabola selected basis functions are the most suitable in accordance
with the process response on step changes of manipulated variable. These functions
request two coincident points ny =2, H1 and H> to be able to construct a feasible MPC
problem, and hence, H1 =1 and H; = 12.

Referring the objective function (4.30), and the equation (4.33), the reference
trajectory yr coefficient is ar = 0.01 and the suppression factor A(k) €[40,400].

4.3.4 PI offline optimized parameters:

The PI controller parameters are inherited from the Subsection 4.1.1.

Discrete equivalents are achieved based on a theoretical sample time to be as close
as possible to the continuous form (tsampie = 1076 5)

G,y (2) = 5648 107(z -1.000354)(z =1)".

The offline optimization is carried out around the operating point s=50V, E=10V,
R=12.5Q, for

G, (2) =(-0.090237; +0.0904)(z2 — 27+ 0.9996)'1 :
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4.3.5 Experimental results

Therefore, the fruitful results rendered by the simulations led us in an experimental
evolution of the identification and control-developed methods on the physical
system Figure 3.16. The selection of the electrical components Table 3.1 (Ts =333 us)
is conducted with a sense to achieve a meaningful comparison with the expertise in
the previous Chapter II, Subsection 2.3.5, which was also experimentally examined
in [7], and generally with the previous simulation results (Section 4.3). Already, the
simulation was showing an incomparably better result than one rendered by the
simple control algorithm in Subsection 2.3.5. It is proving the statement and
objective that the nonlinear phenomena could be reduced or filtered out by the
more intelligent control algorithm. The identification and the predictive control are
tools that are integrated into the controller’s physical knowledge and used to avoid
the isolated attractors if they are not willing stable states. Even the nonlinear
phenomena are present, those are attenuated and driven to the stable states in-
between the fractal system’s structure.

As stated, because of the promising simulation results and a positive experience
with developed Fuzzy Model Predictive Controls, and one of the major objectives of
this thesis that is a reduction of complexity, only FPFC will be experimentally
presented. FDMC and FPFC were showing similar results in the simulation of
control, but the FDMC is more tedious in terms of calculations. The implementation
of FDMC, because of the method’s construction, limits its applicability on more
powerful microcontrollers. A less successful FGPC at the time of simulation equally
suffers that problem. The main limitation is strictly connected with the prediction
and the control horizon N, =N, =12, which builds up complexity in the calculation
of the inverse matrix and matrices’ multiplications. Differently than the underlined
FMPC main complexity issue in this work, apart from those resolved by the
identification approach, the TDOF methodology certainly diminishes the tedious
matrix calculation, but on the other side has a weak control over the transition
states. That is why the FPFC takes a lead over the other performed methods.

[t can be said that the main processing time of this method would be the accessibility
to the offline-learnt knowledge, but this experimental example occupies just 1.6% of
the sampling time calculated for the worse-case scenario, if the processor for each
data word uses the accessing time to the internal memory (which is Paged Flash
access time). For the processor used, that would be 5.5 us. Furthermore, the
complete system’s learnt knowledge is compressed into 153 data words in the
processor’s internal memory of 4G words. Even though the tedious work of the
identification is conducted offline, which is related to the static part (3.44), the
comprehensive and the accurate model of the contemporary process operating point
must be selected online, as it is a dynamic function of regression vectors (3.45). The
FNARX model parameters’ vector a, (k) in Figure 4.4 is calculated throughout the
processor’s fuzzy engine from the offline rendered global and distinctive knowledge.
That significant processor’s workload together with the FPFC devised optimal
control signal takes approximately 180 us of the processor’s time of execution.

The PI controller, purely based on MATLAB tools for SISO controllers [29], was back-
compared with the new derived FPFC, without any loss of generality and presenting
the overall reference to any known, modern control solution. It was gained via the
auto-tuning method, based on a singular frequency and minimization of the ITAE
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(Integral Time Absolute Error), and subsequently optimized by the Gradient Descent
Algorithm for a Medium-Scale performance. A meaningful comparison was derived
with the process step parameter changes, for the wider operating range of the DC-
DC converter. By applying the variable set point s, the converter will be guided from
the DCM operation to a CCM, where the highest process gain is expected.

The disturbances of the process parameters are commenced, simulating the possibly
realistic DC-DC converter’s operating regime.

The internal model discrepancy grows with the prediction horizon, but it is strongly
influenced by the construction of the fuzzy model, where the inductor current is the
measured value and assumed to be constant during the prediction horizon. This is
also the reason the prediction and control horizon are limited to the low value of
N.=N,=12. The stability is improved with the selection of the objective functions and
fine-tuning of the manipulated value suppression factor. This is, for example,
atypical in PFC. Furthermore, the tuning of the suppression factor and the
construction of its time-dependent function preserve the sub-optimal solution.

The offline optimized PI controller is comparable in the process with a higher gain
range, where the optimization is carried out. Analogically, it is incomparably slow in
the lower gain range. Figure 4.11 and a detailed Figure 4.12, from the oscilloscope,
present the responses together to simplify the comparison. The FPFC method shows
its robust advantage and for a wide range of different operating points performs
similarly in its aggressiveness and steady-state stability. The main difficulty can be
found in the steady-state error, which was not obvious in the simulation results in
which the model/process error was negligible, but also in the online processing
demands that are incomparably higher than for the PI. To a realistic extent, the error
reflects in a significant steady-state offset. It is also a feature of the developed
methodology to tackle this kind of problem and compensate for it. Model-based
control gives us the ability to use the predecessor model/process error data in
forming a simple correction to the reference model.
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4.3.6 Conclusion about the FMPC

The EMPC certainly brings a standardized control toolbox that is applicable to PEC
nonlinear dynamical systems, as a typical example of the SAS. Different modelling
may minimize the main drawback in the complexity. In this thesis, we emphasized
the idea that fuzzy modelling, as a universal approximation, is an applicable method.
The EMPC approach together with the mentioned idea is synthesized in the FMPC
methodology for the SAS. The presented complexity of the identification and the
time-consuming convex programming was integrated into a global model derived
from offline algorithms, Subsection 3.3.3, which allowed an expectedly shorter
execution time, but still preserved the adaptive tracking of the process dynamic
changes. For each time scan, the fuzzy model produced the closest approximated
linear model (3.54) in a form (4.10) that is applicable to the employment of standard
finite horizon MPC methods, which then performed similarly and achieved all the
control objectives. In simulation and especially in the experimental results, after the
employment of the physical knowledge based on the complexity reduction, we still
have experienced the online complexity limitations with several FMPC methods. The
FPFC method has performed the best referring the objectives given in this thesis.
The selection of the performance index (4.29), including the suppression factor, was
acknowledged to have high importance in guarding the stability and robustness of
the constructed control algorithms. To fortify the knowledge gathered by the
simulation, the complete methodology was tested on a real process of a DC-DC boost
converter Figure 3.16. The meaningful comparison with the still broadly used
optimized PI controller, because of its applicability and simplicity, presented in
Figures 4.11 and 4.12, must support all previously defined objectives of this thesis.
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ChapterV
Conlusion

The DC-DC Boost converter, as the example taken in this study, is a good
representative of an SAS and gives the qualitative platform for the evolution of the
new control methodologies. The main objective of this thesis unconditionally drives
the new control methodology in the direction of implementing the modern and
developed strategies for the systems that are physically small, but complex in their
behaviour. This objective drives the research in the direction of the fundamental
problem of decomposition and the learning of the most basic system’s behaviour.
Thus, the thesis provides a precise simulation model based on the MLD theory and
performed on the Simulink/Matlab toolbox. A DHA of the DC-DC boost converter
presented here is compared with the results from the previous studies [7]. We found
a high grade of accuracy even in comparison with the experimental results given in
the literature [7]. This certainly supports the obtained results if we refer to the main
objective. Most of the known methods performed on this particular problem employ
the analytical methods in forming the model-based solution [3]. In this thesis, all
widely known objectives are achieved and added to the main objective of forming a
solution that is conciliating the method’s complexity with the applicability on the
physical processes by also considering the investment feasibility.

To achieve the abovementioned, Chapter II provides the comprehensive
analysis of the state-of-the-art solutions but also underlines the complexity of the
task untaken. The theory presented must address problems in the control
algorithms so as to provide a more advanced and optimal solution. The problems
that appear in HS modelling, also including those typically inherited by the feedback
control systems, are considered in the selection of the control methodology.
Differently than in the established methodologies, our approach indicates that a
purely analytical construction of the process model is inadequate to address all the
highlighted problems. That is exclusively when there is a task to stay in the
applicability limits, referring to the physical extents of the process and the feasible
employability. Therefore, it is stated that the physical knowledge of the system is of
crucial importance in taking of different decisions, which will finally lead to the
applicable mathematical model. As the known analytical and precise modelling
unconditionally carries the complexity burden, equally heavy for the processor’s
time of the execution as for the access to the extended memory of the future
controller, the heuristically devised solution aids in overcoming that complexity. The
main bearing, viewed from the aspect of the control technology, stays unchanged
when considering that most of the state-of-the-art methods propagate the model
control solutions. Eventually, the thesis promotes the heuristic control not as the
counterpart of the existing methodologies, but an upgrade to these methodologies. It
focuses the process throughout which the physical knowledge is transferred to the
mathematical model. The idea is inspired by the qualitative mathematical theory in a
way in which the following control solutions avoid an unnecessary and known
complexity, already discovered at the time of forming the model. As shown in the
simulation, the selected example consists of different nonlinear phenomena.
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In this thesis, the presented new methods, in a phase of modelling, are
transforming the natural HS to the continuous. Unlike for the established
methodologies, this research employs the identification of the local models by
numerical methods; even a well-explored averaging method for the selected process
exists. As known and elaborated in this thesis, for the selected example, the standard
averaging is based on the integer programming and the perturbation method
around the operating point. Here, we found the main conflict in establishing the
global and continuous model. It emerges from the fact that the perturbation
methodology is based on the infinitesimal differentials around the operating points
while the identification involves the wider space of the absolute solutions around
the operating points. In more developed methodologies, i.e. the MLD or the LC
solutions, authors preserve the hybrid nature and, by forming the global models,
propagate the model’s scattered nature.

Chapter III presents the analytical thoughts that lead to the construction of the
identification processes and their evaluation. The main idea to maintain the
continuity of the rendered model is achieved by the involvement of the TS fuzzy
modelling. We stated that the HS, and closely the SAS, has the alternative in the
powerful methodology of the mathematical modelling based on the identification.
The results presented show and support this thesis. Thus, the fuzzy identified model
in comparison with the analytically rendered model of HS gives an equal or higher
grade of accuracy in robust modelling. Furthermore, identification methodology is
certainly more accurate for the experimental cases in which the nonlinearities are
not neglected, as it is an example in the analytically derived models. The
identification is done offline, and that has a major benefit in minimizing of the final
processing complexity of the control algorithm. The selection of the regression
vectors that is based on the physical and the experimental knowledge of the system
groups the presented identification methodologies in the grey box identifications. In
the modelling of SAS, two different types of the identification methodologies are
here constructed. First, the identification methodology that provides the fuzzy global
model of the system’s steady states, or differently said the static model. Second, the
identification methodology provides the fuzzy global model as the approximation of
the system’s nonlinear dynamic model. The selection of the identification
methodologies is driven by the final selection of two different controllers of the SAS
system. One controller is defined as the two degrees of freedom control and other as
the MPC.

Those controllers are presented in Chapter IV. The intention to reduce the
online processing complexity of the controller guides the development of two
different control algorithms. Both of controllers are members of the model-based
control. In the case of two-degrees-of-freedom control, the problem was
decomposed in a way to compensate the main drawback of the numerically
optimized linear controller recognized for its robustness for a wider range of the
process parameter change. While the linear controller is designed to stabilize the
small deviation around the operating point, the model-based controller output is
incomparably faster and brings the controller as close as possible to the stable
operating point. On the other side, the model-based control part that inherits the
model/process error, in the expected limits, still requires fine adjustments built with
the linear controller. The first differential of the control variable, as the output of the
fuzzy model, is tuned to comply with the maximum current constrain of the primary
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Conclusion

circuit of the DC-DC converter. The aforementioned function is fulfilled by the
integration time with the integrator that is added to the fuzzy-model-devised steady
state. The tested simulation model was exposed to the different parameters change
at the same time, and the converter reaches the stable operating point extremely
quickly and approaches to the previously identified steady state on a first-order
response manner. The fuzzy model response is connected as the controller’s feed-
forward line, which explains this behaviour.

The transition period in two-degrees-of-freedom methodology is fast, but
sometimes overshoots as that depends on the positivity of the system/model error
in that operating point. To synthesize the solution that considers a dynamic model
based prediction, it also rectifies the overshoots. Furthermore, the MPC certainly
puts more burdens on the processing time, and we have presented the way in which
the EMPC idea integrated differently into the fuzzy model based MPC gives expected
results. The methodology that rectifies the aforementioned is certainly the MPC. The
fuzzy model predictive control in this thesis has the final goal of implementing the
modern methodology that has the suboptimal control over the complete transition
period and steady state of the system. Therefore, it must provide a conciliation of the
MPC methods in its application for the fast response systems. This thesis with the
previous theory and modelling approach achieves the final objective in FPFC, as the
member of FMPC. The simulation and experimental results prove the statement.

Further research will go in the direction of implementing this methodology into
the more complex SAS, but also as the continuation of implementing the qualitative
mathematical theory in designing and exploring the new control methodologies.
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